题目:
问题描述
为了增加公司收入,F公司新开设了物流业务。由于F公司在业界的良好口碑,物流业务一开通即受到了消费者的欢迎,物流业务马上遍及了城市的每条街道。然而,F公司现在只安排了小明一个人负责所有街道的服务。
任务虽然繁重,但是小明有足够的信心,他拿到了城市的地图,准备研究最好的方案。城市中有n个交叉路口,m条街道连接在这些交叉路口之间,每条街道的首尾都正好连接着一个交叉路口。除开街道的首尾端点,街道不会在其他位置与其他街道相交。每个交叉路口都至少连接着一条街道,有的交叉路口可能只连接着一条或两条街道。
小明希望设计一个方案,从编号为1的交叉路口出发,每次必须沿街道去往街道另一端的路口,再从新的路口出发去往下一个路口,直到所有的街道都经过了正好一次。
输入格式
输入的第一行包含两个整数n, m,表示交叉路口的数量和街道的数量,交叉路口从1到n标号。
接下来m行,每行两个整数a, b,表示和标号为a的交叉路口和标号为b的交叉路口之间有一条街道,街道是双向的,小明可以从任意一端走向另一端。两个路口之间最多有一条街道。
输出格式
如果小明可以经过每条街道正好一次,则输出一行包含m+1个整数p1, p2, p3, …, pm+1,表示小明经过的路口的顺序,相邻两个整数之间用一个空格分隔。如果有多种方案满足条件,则输出字典序最小的一种方案,即首先保证p1最小,p1最小的前提下再保证p2最小,依此类推。
如果不存在方案使得小明经过每条街道正好一次,则输出一个整数-1。
样例输入
4 5
1 2
1 3
1 4
2 4
3 4
样例输出
1 2 4 1 3 4
样例说明
城市的地图和小明的路径如下图所示。
样例输入
4 6
1 2
1 3
1 4
2 4
3 4
2 3
样例输出
-1
样例说明
城市的地图如下图所示,不存在满足条件的路径。
评测用例规模与约定
前30%的评测用例满足:1 ≤ n ≤ 10, n-1 ≤ m ≤ 20。
前50%的评测用例满足:1 ≤ n ≤ 100, n-1 ≤ m ≤ 10000。
所有评测用例满足:1 ≤ n ≤ 10000,n-1 ≤ m ≤ 100000。
思路:通过题目可知:找一条字典序最小的欧拉路,字典序最小可以先对边进行排序,用dfs输出路径会爆栈得80分,需要依靠栈改成非递归dfs。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e4 + 5;
const int N = 2e5 + 5;
vector <pair<int , int>> e;
vector <int> g[maxn];
int d[maxn];
stack <int> ans , s;
bool vis[N] , f[maxn];
int num;
int n , m;
bool cmp(int a , int b) {
return e[a].second < e[b].second;
}
void dfs(int u) {
s.push(u);
while(!s.empty()) {
u = s.top();
int i;
for(i = 0; i < g[u].size() ; i++) {
int p = g[u][i] , v = e[p].second;
if(!vis[p]) {
if(p % 2)p--;
vis[p] = vis[p + 1] = 1;
s.push(v);
break;
}
}
if(i >= g[u].size()) {
s.pop();
if(!f[u]) {
f[u] = 1; num++;
}
ans.push(u);
}
}
}
int main() {
ios::sync_with_stdio(0);
cin >> n >> m;
for(int i = 0 ; i < m ; i++) {
int u , v;
cin >> u >> v;
e.push_back(make_pair(u,v));
g[u].push_back(e.size() - 1);
e.push_back(make_pair(v,u));
g[v].push_back(e.size() - 1);
d[u]++; d[v]++;
}
int t = -1 , cnt = 0;
for(int i = 1 ; i <= n ; i++) {
if(d[i] % 2) {
if(t == -1)t = i;
cnt++;
}
}
if(t == -1)t = 1;
if(cnt == 0 || cnt == 2) {
for(int i = 1 ; i <= n ; i++) {
sort(g[i].begin() , g[i].end() , cmp);
}
dfs(t);
if(num < n) {
cout << -1 << "\n";
return 0;
}
int ct = 0;
while(!ans.empty()) {
int u = ans.top(); ans.pop();
if(ct > 0) cout << " ";
cout << u;
ct++;
}
cout << "\n";
}
else {
cout << -1 << "\n";
}
return 0;
}