题目链接:https://codeforces.com/contest/1152/problem/C
思路:题目中要求最小正整数k是的lcm(a+k,b+k)最小,而lcm(a,b)gcd(a,b)==ab,即lcm(a,b)==a*b/gcd(a,b),即题目转换为求gcd(a+k,b+k)使lcm最大,gcd(a+k,b+k)=gcd(a+k,b-a)
(因为gcd(x,y)=gcd(x,y-x)),而要求gcd(a+k,b-a),首先想到枚举k,而k的范围可能是1e8以上,再加上gcd()必定超时。 这是就看到大佬说可以枚举b-a的因数,感觉还是挺暴力,枚举可以从1到sqrt(n).
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5;
ll p[maxn];
int main() {
ll a,b;
ios::sync_with_stdio(0);
cin >> a >> b;
ll ta=a,tb=b;
a=max(ta,tb);b=min(ta,tb);
if(a==b)cout <<0<<endl;
else {
ll cnt=0;
ll k=(a-b)-b%(a-b);
cnt=(a+k)*(b+k)/(a-b);
ll t=(a-b);
int pos=0;
for(ll i=1;i*i<=t;i++) {
if(t%i==0) {
if(i*i!=t)p[pos++]=t/i;
p[pos++]=i;
}
}
//cout << pos<<endl;
for(int i=0;i<pos;i++) {
if((a-b)%p[i])continue;
int k1;
if(b%p[i]==0)k1=0;
else k1=p[i]-b%p[i];
if(cnt>(a+k1)*(b+k1)/p[i]) {
k=k1;
cnt=(a+k)*(b+k)/p[i];
}
}
cout << k << endl;
}
return 0;
}