Codeforces Round #554 (Div. 2) C. Neko does Maths

题目链接:https://codeforces.com/contest/1152/problem/C
思路:题目中要求最小正整数k是的lcm(a+k,b+k)最小,而lcm(a,b)gcd(a,b)==ab,即lcm(a,b)==a*b/gcd(a,b),即题目转换为求gcd(a+k,b+k)使lcm最大,gcd(a+k,b+k)=gcd(a+k,b-a)
(因为gcd(x,y)=gcd(x,y-x)),而要求gcd(a+k,b-a),首先想到枚举k,而k的范围可能是1e8以上,再加上gcd()必定超时。 这是就看到大佬说可以枚举b-a的因数,感觉还是挺暴力,枚举可以从1到sqrt(n).
代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int maxn=1e5;

ll p[maxn];


int main() {
	ll a,b;
	ios::sync_with_stdio(0);
	cin >> a >> b;
	ll ta=a,tb=b;
	a=max(ta,tb);b=min(ta,tb);
	if(a==b)cout <<0<<endl;
	else {
		ll cnt=0;
		ll k=(a-b)-b%(a-b);
		cnt=(a+k)*(b+k)/(a-b);
		ll t=(a-b);
		int pos=0;
		for(ll i=1;i*i<=t;i++) {
			if(t%i==0) {
				if(i*i!=t)p[pos++]=t/i;
				p[pos++]=i;
			}
		}
		//cout << pos<<endl;
		for(int i=0;i<pos;i++) {
			if((a-b)%p[i])continue;
			int k1;
			if(b%p[i]==0)k1=0;
			else k1=p[i]-b%p[i];
			if(cnt>(a+k1)*(b+k1)/p[i]) {
				k=k1;
				cnt=(a+k)*(b+k)/p[i];
			}
		}
		cout << k << endl;
	} 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值