题目:
问题描述
小明和小芳出去乡村玩,小明负责开车,小芳来导航。
小芳将可能的道路分为大道和小道。大道比较好走,每走1公里小明会增加1的疲劳度。小道不好走,如果连续走小道,小明的疲劳值会快速增加,连续走s公里小明会增加s2的疲劳度。
例如:有5个路口,1号路口到2号路口为小道,2号路口到3号路口为小道,3号路口到4号路口为大道,4号路口到5号路口为小道,相邻路口之间的距离都是2公里。如果小明从1号路口到5号路口,则总疲劳值为(2+2)2+2+22=16+2+4=22。
现在小芳拿到了地图,请帮助她规划一个开车的路线,使得按这个路线开车小明的疲劳度最小。
输入格式
输入的第一行包含两个整数n, m,分别表示路口的数量和道路的数量。路口由1至n编号,小明需要开车从1号路口到n号路口。
接下来m行描述道路,每行包含四个整数t, a, b, c,表示一条类型为t,连接a与b两个路口,长度为c公里的双向道路。其中t为0表示大道,t为1表示小道。保证1号路口和n号路口是连通的。
输出格式
输出一个整数,表示最优路线下小明的疲劳度。
样例输入
6 7
1 1 2 3
1 2 3 2
0 1 3 30
0 3 4 20
0 4 5 30
1 3 5 6
1 5 6 1
样例输出
76
样例说明
从1走小道到2,再走小道到3,疲劳度为52=25;然后从3走大道经过4到达5,疲劳度为20+30=50;最后从5走小道到6,疲劳度为1。总共为76。
数据规模和约定
对于30%的评测用例,1 ≤ n ≤ 8,1 ≤ m ≤ 10;
对于另外20%的评测用例,不存在小道;
对于另外20%的评测用例,所有的小道不相交;
对于所有评测用例,1 ≤ n ≤ 500,1 ≤ m ≤ 105,1 ≤ a, b ≤ n,t是0或1,c ≤ 105。保证答案不超过106。
思路:一看题立即联想到分层图等我不会的操作,冷静下来后发现只是给出了两种不同的边而已,按照正常的最短路算法就可以直接求解(感觉此题是最短路+模拟).分层图是在有把边减少之类的操作是才会用到。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 505;
const int INF = 0x7f7f7f7f;
typedef long long ll;
struct node { //一个结构题两种用途存边和dj中存到某点的距离
ll t,v,w;
node(int a , int b ,int c):t(a) , v(b) , w(c) {}
node(int a , int b):v(a) , w(b){}
node(){}
bool operator < (const node b)const {
return w + t * t > b.w + b.t * b.t;
}
};
vector <node>g[maxn];
ll dist[maxn],distx[maxn];
bool vis[maxn];
int main() {
int n,m;
ios::sync_with_stdio(0);
cin >> n >> m;
for(int i = 0; i < m; i++) {
int t,a,b,c;
cin >> t >> a >> b >> c;
g[a].push_back(node(t,b,c));
g[b].push_back(node(t,a,c));
}
priority_queue <node> q;
q.push(node(0,1,0));
for(int i = 1; i <= n; i++) dist[i] = INF , distx[i] = 0;
dist[1] = 0;
while(!q.empty()) {
node p = q.top(); q.pop();
int u = p.v , d = p.w;
int tp = p.t;
if(vis[u]) continue;
vis[u] = 1;
for(int i = 0; i < g[u].size(); i++) {
ll v = g[u][i].v , f = g[u][i].t;
if(vis[v])continue;
if(f == 0) {
if(dist[v] + distx[v] * distx[v]> dist[u] + tp * tp + g[u][i].w) {
dist[v] = dist[u] + g[u][i].w + tp * tp;
distx[v] = 0;
q.push(node(0,v,dist[v]));
}
}
else {
if(dist[v] + distx[v] * distx[v] > dist[u] + (tp + g[u][i].w) * (tp + g[u][i].w) ) {
distx[v] = tp + g[u][i].w;
dist[v] = dist[u];
q.push(node(tp+g[u][i].w,v,dist[v]));
}
}
}
}
cout << dist[n] + distx[n] * distx[n] << "\n";
return 0;
}