sql查询技巧,按时间分段进行分组,每半小时一组统计组内记录数量

今天拿到一个查询需求,需要统计某一天各个时间段内的记录数量。

具体是统计某天9:00至22:00时间段,每半小时内订单的数量,最后形成的数据形式如下:

时间段          订单数

9:00~9:30 xx个

9:30~10:00 xx个

...

 

如果说是按每个小时来统计订单数量,这个是比较简单的,只要将订单表中的OrderTime字段中的小时取出,然后根据每个小时的值进行group by就可以了。

select T.timehour,count(T.orderid) as number from

(

select o.orderid,datename(hh,o.ordertime) as timehour from orders as o 

where o.ordertime<'2013-10-20 22:00' and o.ordertime>'2013-10-20 9:00'

) as T

group by T.timehour

order by timehour asc

 

但是如果要实现上面的那种查询就有点麻烦了。我想到的一种实现方案是:取出每个订单的时间字段中的“小时和分钟”,将这个时间转换为距凌晨的分钟数。如:9:00转换后就是540,9:30转换后就是570。

计算的过程是:

1、取定一个基线值:base=540(9:00)

2、每条条订单记录的分钟数设为:timehour

   分组编号:groupid=(timehour-base)/30

 

这样可以将各个时间段内的时间统一到一个分组编号中去。如下:

时间值 groupid     

9:02     0

9:23 0

9:30 1

9:31 1

10:01 3

..

 

这样一来,就把各个时间段内的时间转换成对应的某一个分组编号了,这样我们就可以对每个groupid进行分统计每个组内的订单数了。

时间段          groupid

9:00~9:30 0

9:30~10:00 1

10:00~10:30 2

..

 

下面是完整的sql语句:

select T.groupid,count(T.orderid) as number from

(

select o.orderid,o.ordertime,((datename(hh,o.ordertime)*60+datename(mi,o.ordertime))-540)/30 as groupid from orders as o 

where o.ordertime<'2013-10-20 22:00' and o.ordertime>'2013-10-20 9:00'

) as T

group by T.groupid

order by groupid

 

现实案例:查询20200119-CCT 9:00-18:00分时段的进线数量,已每半个小时为单位;完整sql如下:

select T.groupid,COUNT(T.队列) as 进线数量 from

(

select o.队列,o.开始时间,((datename(hh,o.开始时间)*60+datename(mi,o.开始时间))-540)/30 as groupid

FROM CallInfo20200119 as o

where 队列 in ('2@default','4@default') AND 开始时间 BETWEEN '2020-01-19 09:00' AND '2020-01-19 18:00'

) as T

group by T.groupid

order by groupid

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值