【深度学习】详解 MoCo


目录

摘要

一、引言

二、相关工作

三、方法

3.1 Contrastive Learning as Dictionary Look-up

3.2 Momentum Contrast

3.3 Pretext Task

四、实验

4.1 Linear Classification Protocol

总结 ☆

实现

参考资料



摘要

        我们提出了 动量对比 (MoCo) 用于 无监督视觉表示学习。从对比学习作为字典查找 (look-up) 的角度来看,我们构建了一个 具有一个 队列 (queue) 和一个 移动平均编码器 (moving-averaged encoder) 的 动态字典。这使得动态 (on-the-fly) 建立一个大型且一致的字典能够促进对比无监督学习。MoCo 在 ImageNet 线性分类通用协议下提供了有竞争力的结果。更重要的是,MoCo 学习到的表示可以很好地迁移到下游任务中。MoCo 可在 PASCAL VOC、COCO 和其他数据集上的 7 个检测/分割任务中 优于 有监督的预训练竞争者,有时甚至远超。这表明,在许多视觉任务中,无监督和有监督表示学习之间的差距已在很大程度上被缩小。


一、引言

        无监督表示学习在 NLP 中非常成功,如 GPT 和 BERT。但是有监督预训练在 CV 中仍占主导地位 (be dominant in),而无监督 CV 方法通常是落后的 (lag behind)。其原因可能在于它们 各自的信号空间的差异语言 任务 具有 离散的信号空间 (words, sub-words 等),用于构建 tokenized 字典,该过程可以基于无监督学习。相比之下,CV 进一步关注字典构建,因为 (视觉的) 原始信号 处于一个 连续且高维的空间 中,且并非面向人类通信的结构 (例如,不像 words)。

        最近的几项研究提出使用 与对比损失相关的方法 进行无监督视觉表示学习,并展示出了有前景的结果。尽管受到各种动机的驱动 (driven by various motivations),这些方法可以被认为是 构建动态字典字典中的 key (tokens) 采样自数据 (如 images 或 patches),并由编码器网络表示无监督学习训练编码器 以实施 字典查找 (look-up)一个经编码的 query 应与其匹配的 key 相似,而与其他 keys 不相似学习被表述为 最小化对比损失

        从这个角度来看,假设构建字典的理想情况是:(i) 大型且 (ii) 在训练期间的演进/发展 (evolve) 具有一致性。直观地,一个更大的字典可以更好地采样潜在的 (underlying) 连续且高维的视觉空间,而字典中的 key 应由相同或相似的编码器来表示,以便它们与 query 的比较是一致的。然而,现有使用对比损失的方法会限制两个方面中一者 (稍后将在上下文中讨论)。

一个好的字典应同时具有以下两个特性

  • 字典足够大型:字典越大则 key 越多,所能表示的视觉信息、视觉特征就越丰富 ,从而用 query 参与对比学习时,才越能学到图片的特征。反之,若字典很小,则模型很容易学习一些捷径来区分正、负样本 (过度拟合简单样本/特征),对大量真实数据的泛化很差。
  • 编码的特征尽量保持一致性:字典里的 key 都应用相同/相似的编码器去编码得到,否则在模型查找 query 时,可以走一些捷径 —— 通过找到和 query 使用相同/相似的编码器的 key,而非真正与 query 含有相同/相似语义信息的 key。

对比学习方法在过去都至少被上述二者之一限制,而 MoCo 最大的贡献在于,使用队列以及动量编码器进行对比学习,解决该问题。

图 1:动量对比 (MoCo) 通过使用对比损失 将 “经编码的 query q” 与 “经编码的 key 的字典” 实施匹配来训练视觉表示编码器。
字典 keys {k0, k1, k2, …} 是由一组数据样本动态 (on-the-fly) 定义的。
keys 的字典被构建为一个队列,当前的 mini-batch 入队,最早的 mini-batch 出队,使之与 mini-batch 大小解耦。
keys 被一个缓慢更新 (slowly progressing) 的编码器编码,由 query 编码器的动量更新驱动。
这种方法为学习视觉表示提供了一个大型且一致的字典。

        我们提出了动量对比 (MoCo),作为一种构建大型且一致的字典的方法,用于具有对比损失的无监督学习 (图 1)。字典 被维护为一个 数据样本的队列:当前的 mini-batch 入队,最早的 mini-batch 出队。该队列 将字典大小与 mini-batch 大小解耦,从而 允许字典变得大型。此外,由于 字典 keys 来自于前面的几个 mini-batch,此处提出了一个 缓慢更新 (slowly progressing) 的 key 编码器作为 query 编码器的基于动量的移动平均 (momentum-based moving average) 来实现,以 保持一致性

        MoCo 是一种构建对比学习的动态字典的机制,可用于各种 前置/代理任务 (pretext task)。本文 following 最广泛应用的简单前置任务 —— 实例判别 (instance discrimination)若 query 和 key 是源自同一图像的经编码的视图 (views)则二者相匹配。利用这个前置任务,MoCo 显示出在 ImageNet 中在线性分类普通协议下的具有竞争力的结果。

        无监督学习的一个主要目的是 预训练可通过微调迁移到下游任务的表示 (即特征)。在 7 个与检测/分割相关的下游任务中,MoCo 无监督预训练可超过 ImageNet 有监督预训练,(甚至) 在某些情况下远超 (by nontrival margins)。在实验中,探索了在 ImageNet 或 10 亿个 Instagram 图像集上预先训练过的 MoCo,证明了 MoCo 可在更真实、十亿图像规模和相对未知的 (uncurated) 场景中很好地工作。这些结果表明,MoCo 在很大程度上在许多 CV 任务中缩小了无监督和有监督表示学习之间的差距,并且在一些应用中可作为 ImageNet 有监督预训练的替代方案。 

  • 详见文末总结

二、相关工作

        无监督/自监督 (自监督学习是无监督学习的一种形式。在现有文献中,它们的区别是非正式的。本文中,我们在 “没有人类注释的标签监督” 的意义上,使用了更经典的术语 “无监督学习”) 学习方法通常涉及两个方面:前置任务和损失函数。“前置” 一词意味着被解决的任务并非真正的兴趣,而为了学习良好的数据表示的用于真正目的 (如 下游任务)。损失函数 通常可独立于前置任务被调查/研究。MoCo 侧重于损失函数方面。接下来将讨论有关这两个方面的相关研究。

        损失函数。定义损失函数的一种常见方法是 衡量 模型的预测 和 一个固定的 target 之间的差异,例如通过 L1 或 L2 损失重建输入像素 (如 自动编码器),或通过交叉熵或 margin-based 的损失将输入分类为预定义的类别 (如 8 个位置、color bins)。如下面所述,其他的替代方案也是可能的。

        对比损失 衡量了 表示空间中样本对的相似度。有别于将输入与固定的 target 进行匹配,在对比损失公式中,target 可在训练过程中动态 (on-the-fly) 变化,并且可根据网络计算的数据表示来定义。对比学习是最近几项关于无监督学习的工作的核心,稍后将在上下文中详细阐述它(3.1 节)。

        对抗损失 衡量了 概率分布之间的差异。这是一种广泛成功的无监督数据生成技术。在 (Adversarial feature learning, Large scale adversarial representation learning) 中探讨了表示学习的对抗方法。生成对抗网络 (GAN)噪声对比估计 (noise-contrastive estimation, NCE) 之间存在关系 (Generative adversarial nets)

        前置任务。人们提出了范围广泛的 前置/代理任务 (pretext task)。例子方面,包括在某些损坏下恢复输入,如 去噪自动编码器、上下文自动编码器,或跨通道自动编码器 (colorization)。一些前置任务通过构造伪标签,如 单张 “样例 (exemplar)” 图像的转换、patch 排序、跟踪或分割视频中的 objects,或聚类特征。

        对比学习 vs 前置任务。各种前置任务都可基于某种形式的对比损失函数。实例判别 (Instance discrimination) 方法,与基于样例 (exemplar-based) 的任务和噪声对比估计相关。对比预测编码 (CPC) 中的前置任务是上下文自动编码的一种形式,而对比多视图 (multivies) 编码 (CMC) 中的前置任务与 colorization 有关。


三、方法

3.1 Contrastive Learning as Dictionary Look-up

        对比学习及其近期发展,可被视为是 为字典查找 (look-up) 任务训练一个编码器,如下所述。

        考虑一个经编码的 query q,和 一组经编码的样本 \{ k_0, k_1, k_2, ... \} —— 字典的 keys。假设字典中有一个 q 相匹配的 key (记为 k_{+})。对比损失是一个函数,当 q 与 positive key k_{+} 相似 且与所有其他 keys 不同 (被视为 q 的 negative keys) 时,损失函数值较低。利用 点积 衡量相似度,本文考虑了一种对比损失函数的形式,称为 InfoNCE

        其中,\tau 是每个 (Unsupervised feature learning via non-parametric instance discrimination) 的温度超参数。当 \tau = 1 时,InfoNCE 变为标签 CE 损失。InfoNCE 的总和包含了一个正样本 k_{+}K +1 个负样本 (即字典/队列里所有 keys)。直观地,InfoNCE 损失是一个 ( K + 1) 路的 softmax 分类器的对数损失,该分类器努力将 q 归类为 k_{+}。对比损失函数也可基于其他形式,如 margin-based 的损失和 NCE 损失的变体。

InfoNCE Loss

  • 公式 (1) 的分子表示 query 和正样本 key 计算,分母表示 query 和 K+1 个负样本 key 计算累加和。
  • 直接计算的复杂度很大,因为 MoCo 使用 instance discrimination 作为前置任务,那么 IN-1K 的 128 万张图片即可视为有 128 万个类别,相应地要设置 128 万分类的 Softmax,从而直接计算和训练是非常困难的。
  • NCE loss (Noise Contrastive Estimation Loss):将多分类改造为二分类 —— 数据类别 data sample (正类) 和噪声类别 noisy sample (负类),从而解决了巨量类别问题。
  • Estimation:意为近似。为降低计算复杂度,不是在每次迭代时遍历整个 IN-1K 的约 128 万个负样本,而是只从中选一些负样本来参与 Loss 计算 (即选队列字典中的 65536 个负样本),从而相当于一种近似。这也正是 MoCo 所强调的 —— 好的字典应足够大型,因为越大型的字典越能够提供越好的近似。
  • InfoNCE Loss 作为 NCE loss 的一个简单变体,认为如果只把问题视为二分类,可能对模型学习不是很友好,毕竟大量的噪声样本很有可能不属于一个类别,所以还是视为了多分类问题。
  • 公式 (1) 的 q * k_{+} 其实相当于 logit,也可类比为 Softmax 中的 z\tau 作为温度超参数,用于控制分布的形状 。\tau越大,分布中的数值越小,经过指数化 ( exp(·) ) 后会更小,分布就会变得更平滑,相当于对比损失对所有的负样本都一视同仁,导致学习的模型缺乏差异化关注。相反,\tau 越小,分布更集中,模型会更关注困难负样本,特别是那些作为困难负样本的潜在正样本,若模型过度关注负样本,会导致模型很难收敛,或学到的特征缺乏泛化性。

        对比损失 作为一个无监督的目标函数来 训练表示 query 和 keys 的编码器网络。通常,query q = f_q(x^q),其中 f_q 是一个 (query) 编码器网络,x^q 是一个 query 样本 (同理有 k = f_k(x^k))。它们的实例化 (instantiations) 取决于具体的前置任务。输入的 query x^q 和 key x^k 可以是 图像patches包含一系列上下文的 patches 等。使用的 query 编码器网络 f_qkey 编码器网络 f_k 可以是 完全相同/共享的 (如 Inva Spread 架构相同参数共享)、部分相同/共享的、或完全不同的 (如 CMC,多视角多编码器)


3.2 Momentum Contrast

        从上述角度来看,对比学习是一种 在图像等高维连续输入上构建离散字典 的一种方法。字典是动态的,因为 keys 是随机采样的,且 key 编码器在训练过程中演进 (evolves)。我们的假设是,好的特征可以通过一个包含大量负样本的大型字典来学习,而字典 keys 的编码器尽管还在演进,但仍尽可能地保持一致。基于这个动机,我们将呈现出下面所描述的动量对比。 

        字典作为队列。我们方法的核心是将字典作为一个数据样本的队列。这允许我们重用最靠近前面的 mini-batches 中的经编码的 keys。队列的引入可将字典大小与 mini-batch 大小解耦。我们的字典大小可以比一个典型的 mini-batch 大小大得多,并且可灵活独立地设为一个超参数。

        字典中的样本逐渐被替换。当前的 mini-batch 将入队字典,队列中最老的 mini-batch 将被移除出队。字典总是表示所有数据的一个采样子集 (类似基于所有数据的滑动窗口),而维护此字典的额外计算是可管理的。此外,删除最老的 mini-batch 可能是有益的,因为其中的 经编码的 keys 是最过时的,因此与最新的 keys 最不一致

        动量更新使用队列可使字典变得大型,但它也使通过反向传播更新 key 编码器变得困难 (梯度应传播到队列中的所有样本)。一个朴素的解决方案是从 query 编码器 f_q复制 key 编码器 f_k 而 忽略 这个 梯度。但这种解决方案在实验中产生的结果很差 (4.1 节)。我们假设,这种失败是由 快速变化的编码器降低了 key 表示的一致性 导致的。我们提出 动量更新 来解决该问题。

        形式上,将 f_k 的参数表示为 \theta_kf_q 的参数表示为 \theta_q,通过下式更新 \theta_k

        此处 m \in [0,1) 是一个动量系数。只有 query 编码器参数 \theta_q 才会通过反向传播进行更新,而当前的 key 编码器参数 \theta_k 是基于先前的 \theta_k 和当前的 \theta_q 实现间接动量更新。在公式 (2) 中的动量更新使 \theta_k 比 \theta_q 演进得更 smoothly。因此,尽管 队列中的 keys 由不同的编码器编码 (在不同的 mini-batches),但这些 编码器间的差异可以很小。在实验中,一个相对较大的动量 (如 m = 0.999,我们的默认值) 比一个较小值 (如 m = 0.9) 要好得多,这表明 一个缓慢演进的 key 编码器是利用队列的核心

图 2:三种对比损失机制的概念性比较 (实证比较见图 3 和表 3)。
此处将举例说明一对 query 和 key。​​这 3 种机制在如何维护 keys 和如何更新 key 编码器方面有所不同。
(a): 用于计算 query 和 key 表示的编码器通过反向传播进行端到端更新 (这两个编码器可以不同)
(b): key 表示从内存库 (memory bank) 中采样
(c): MoCo 通过一个动量更新的编码器动态地编码新 keys,并维护一个 keys 的队列 (详见图 1)

        与先前机制的关系。MoCo 是使用对比损失的通用机制。我们将其与图 2 中两种现有的通用机制进行了比较。它们在字典的大小和一致性上表现出不同的属性。

        通过反向传播进行的端到端更新 是一种自然的机制 (图 2a)。它使用 当前 mini-batch 中的所有样本作为字典,因此 keys 被一致地编码 (由相同的一组编码器参数编码)。但字典大小与 mini-batch 大小相耦合 (couple with),会受到 GPU 内存大小的限制。它也受到了大 mini-batch 优化的挑战。最近的一些方法是基于 由局部位置 (local positions) 驱动的前置任务,其中通过多个位置 (multiple positions) 可以使字典大小更大。但是这些前置任务可能需要特殊的网络设计,如 patchifying 输入 或 customizing 感受野大小,这可能会使这些网络向下游任务的迁移复杂化。

(a) SimCLR / Inva Spread 的端到端学习

  • 缺点:字典大小和 mini_batch 大小一致,但大 batch 难设置、难优化、难收敛,故效果有限。
  • 优点:梯度反向传播使得编码器可以实时更新,从而令字典中的 key 具有很高的特征一致性。
  • SimCLR 最终去 batch_size=8192 训练 (谷歌 TPU memory 很大),可以支持模型做对比学习。

        另一种机制是 内存库 (memory bank) 方法 (图 2b)内存库由数据集中所有样本的表示组成 (离线提取所有 keys 表示)每个 mini-batch 的字典都随机抽样自内存库而没有反向传播,因此它可以支持一个大型的字典。然而,当最后一次看到样本 (的表示) 时,内存库中样本的表示被更新,因此采样到的 keys 本质上是关于在整个过去 epoch 的多个不同 steps 的编码器,因此不够一致。在 (Unsupervised feature learning via non-parametric instance discrimination) 中的内存库采用了动量更新。其动量更新是在同一个样本的表示上,而非编码器。该动量更新与我们的方法无关,因为 MoCo 并没有追踪每个样本。此外,MoCo 的内存效率更高,并且可以在数十亿的规模数据上训练,这对于内存库来说是难以处理的。

(b) Memory Bank / InstDisc 模型

  • memory bank 中,query 的编码器是梯度更新的,但是字典中的 key 没有单独对应的可学习编码器。
  • memory bank 预存了整个数据集的嵌入特征,训练时只需要从中采样一些 keys 子集作为字典,然后正常计算 query 和 key 的 loss,通过梯度反向传播更新编码器。
  • 编码器更新后,重新编码​采样到的 keys 子集得到新的嵌入特征来替换原值,从而完成一个 step 的 memory bank 更新,依此类推.
  • ImageNet 虽有 128 万张图片 —— 128 万个 keys,但特征维度 dim = 128,用 memory bank 存下来只需 600M,尚且可行。但是对于亿级图片规模的数据,预提取和存储所有特征则要几十至几百 G 的 memory,故 memory bank 的扩展性不如 MoCo。

memory bank 的特征一致性很差

  • query 编码器的更新很频繁 (batch-wise),导致 key 的嵌入特征提取自不同时刻的编码器,特征一致性很差。
  • memory bank 预存了整个数据集的嵌入特征,使得模型要训练一个 epoch (所有 steps / iters) 才能把整个 memory bank 更新一遍。当下一个 epoch 训练开始时,第一个 step / iter 选中的 keys 的嵌入特征可能分别来自上一个 epoch 中不同时刻的编码器,导致 query和 key 的嵌入特征差异很大。
  • memory bank 通过另一个 loss (proximal optimization) 平滑训练过程,也提到了动量更新 (样本的表示/特征,而非编码器)。

        第 4 节对这三种机制进行了实证比较 (empiricaly compares)。


3.3 Pretext Task

        对比学习可以驱动各种前置任务。本文的重点不是设计一个新的前置任务,而是主要 following (Unsupervised feature learning via non-parametric instance discrimination) 中的实例判别任务并使用一个简单的前置任务,这与一些最近的工作有关。

        按照 (Unsupervised feature learning via non-parametric instance discrimination)如果一个 query 和一个 key 来自同一图像,则我们将它们视为正对,否则将它们视为负样本对。我们使用随机数据增强广 获取同一图像的两个随机 “视图 (views)” 以构成一个正对。而 query 和 key 分别由它们的编码器 f_q 和 f_k 进行编码。该编码器可以是任何 CNN。

算法 1

        算法 1 为这个前置任务提供了 MoCo 的伪代码。对于当前的 mini-batch,我们编码 query 及其对应的 keys,它们构成了正样本对。负样本则来自队列。

f_k.params = f_q.params  # key 编码器的参数初始化基于 query 编码器
for x in loader:  # 取出一个 mini-batch 的图像序列 x,包含 N = 256 张图片,但没有标签
    x_q = aug(x)  # 用作 query 的图(数据增广得到)
    x_k = aug(x)  # 用作 key 的图 (数据增广得到),与 x_q 构成正样本对
    q = f_q.forward(x_q)  # 提取 query 特征,q.shape = N×C,c 为 embed dim
    k = f_k.forward(x_k)  # 提取 key 特征,k.shape = N×C,c 为 embed dim
    k = k.detach()  # 不使用梯度更新 key 编码器 f_k 的参数,确保提取的特征的一致性

    # bmm 是分批矩阵乘法; 字典大小 K = 65536
    l_pos = bmm(q.view(N,1,C), k.view(N,C,1))  # l_pos.shape = N×1,q * k+ (query 与当前正样本的相似度)
    l_neg = mm(q.view(N,C), queue.view(C,K))  # l_neg.shape = N×K,q * k_ (query 与上一 mini-batch 或 queue 的所有负样本的相似度)
    logits = cat([l_pos, l_neg], dim=1)  # 拼接正负样本相似度,logits.shape = N×(1+K) = 256×(1+65536) -> 相当于 65537 分类
    labels = zeros(N)  # 按照以上实现方式,所有正样本永远在 logits 的 index = 0 的位置上
 
    # InfoNCE Loss,促进 query 与正样本 key 的相似度越来越高、与负样本 keys 的相似度越来越低
    loss = CrossEntropyLoss(logits/t, labels) 
    loss.backward()  # 计算梯度反向传播

    update(f_q.params)  # query 编码器 f_q 使用梯度立即更新
    f_k.params = m*f_k.params+(1-m)*f_q.params   # key 编码器 f_k 缓慢地动量更新

    enqueue(queue, k)  # 当前 mini-batch 的样本特征入队,作为下一个 mini-batch 中 query 的负样本
    dequeue(queue)  # 最早进入 queue 的 mini-batch 出队

        技术细节。我们采用 ResNet 作为编码器,其最后一个全连接层 (在全局平均池化之后) 具有固定维数的输出 (128-D)。输出向量由 L2-范数归一化。此即为 query 或 key 的表示。公式 (1) 中的温度系数 \tau 设为 0.07。数据增广设置遵循 (Unsupervised feature learning via non-parametric instance discrimination)从经随机 resized 的图像中裁剪出 224×224 的像素,然后随机颜色抖动 (color jittering)、随机水平翻转和 随机灰度转换,所有这些都可以在 PyTorch 的 torchvision 包中获得。以下展示了数据增广示例代码:

# https://github.com/facebookresearch/moco/blob/main/main_moco.py

    if args.aug_plus:
        # MoCo v2's aug: similar to SimCLR https://arxiv.org/abs/2002.05709
        augmentation = [
            transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
            transforms.RandomApply([
                transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)  # not strengthened
            ], p=0.8),
            transforms.RandomGrayscale(p=0.2),
            transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.5),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize
        ]
    else:
        # MoCo v1's aug: the same as InstDisc https://arxiv.org/abs/1805.01978
        augmentation = [
            transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
            transforms.RandomGrayscale(p=0.2),
            transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize
        ]

        Shuffling BN。编码器 f_q 和 f_k 都有 BN,如同标准 ResNet。实验中发现 使用 BN 会抑制模型学习良好的表示,就像在 (Data-efficient image recognition with contrastive predictive coding) 中所报道的那样 (它避免使用 BN)。模型似乎 “欺骗 (cheat)” 前置任务,且容易找到低损失的解决方案。这可能是因为 样本间的 intra-batch 通信 (由 BN 引起的) 泄漏了信息(前人认为 BN 使样本间数据不期望的发生交互,从而使模型倾向于找到与原训练目标不符的 low-loss 优化方式,故避免使用 BN)

        我们通过 shuffling BN 来解决该问题。我们使用多 GPU 训练,并为每个 GPU 独立地对样本执行 BN (正如在普通实践中所做的那样)。对于 key 编码器 f_k,在将其分布到各 GPU 之间前,shuffle 当前 mini-batch 中的样本顺序 (并在编码后 shuffle back);query 编码器 f_q 的 mini-batch 的样本顺序不变。这 确保了用于计算 query 及其 positive key 的 batch 统计信息 来自两个不同的子集。这有效地解决了作弊 (cheating) 问题,并允许训练受益于 BN。(由于每个 batch 内的样本之间计算 mean 和 std 导致信息泄露,产生退化解。MoCo 通过多 GPU 训练,分开计算 BN,并且 shuffle 不同 GPU 上产生的 BN 信息来解决问题)

        本文在我们的方法和对应的端到端消融中都使用了 shuffling BN (图 2a)。它与作为竞争者的内存库无关 (图2b),内存库不受此问题的影响,因为 positive keys 来自过去不同的 mini-batches。


四、实验

        我们研究基于以下数据集的无监督训练:

        ImageNet-1M (IN-1M):ImageNet 训练集基于 1000 个类别,有 ∼128 万张图像 (其实是 ImageNet-1K;我们计算图像数量 1M 而非类别 1K,因为无监督学习不用类别)。该数据集在类别分布上很平衡,其中的图像通常包含 objects 的标志性视图 (iconic view)。

        Instagram-1B (IG-1B):根据 (Exploring the limits of weakly supervised pretraining),这是一个来自 Instagram 的具有 ∼10亿 (940M) 公共图像的数据集。这些图片具有与 ImageNet 类别相关的∼1500 种散列标记 (hashtags)。与 IN-1M 相比,该数据集相对未被规整 (uncurated),并且具有真实世界数据的长尾、不平衡的分布。此数据集同时包含标志性 (iconic) objects 和场景级 (scene-level) 图像。

        训练。使用 SGD 优化器,权重衰减为 0.0001,动量为 0.9。对于 IN-1M,在 8 个 GPU 中使用 256 的 mini-batch (算法 1 中的 N),初始学习率为 0.03。在 120 和 160 个 epoch 时学习率乘 0.1,共训练 200 个 epochs,耗费 ∼53 小时训练 ResNet-50。对于 IG-1B,在 64 个 GPU 中使用 1024 的 mini-batch,学习率为 0.12,每 62.5k 次迭代 (64M 张图像) 学习率指数衰减 0.9×。训练 125 万 (1.25M) 次迭代 (IG-1B 的 ∼1.4 个 epoch),耗费 ∼6 天训练 ResNet-50。

# https://github.com/facebookresearch/moco/blob/main/main_moco.py

parser.add_argument('--epochs', default=200, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int,
                    help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
# moco specific configs:
parser.add_argument('--moco-dim', default=128, type=int,
                    help='feature dimension (default: 128)')  # embedding size = 128
parser.add_argument('--moco-k', default=65536, type=int,
                    help='queue size; number of negative keys (default: 65536)')  # len(queue) = 65536
parser.add_argument('--moco-m', default=0.999, type=float,
                    help='moco momentum of updating key encoder (default: 0.999)')  # m = 0.999
parser.add_argument('--moco-t', default=0.07, type=float,
                    help='softmax temperature (default: 0.07)')  # τ = 0.07
# https://github.com/facebookresearch/moco/blob/main/main_moco.py

def adjust_learning_rate(optimizer, epoch, args):
    """Decay the learning rate based on schedule"""
    lr = args.lr
    if args.cos:  # cosine lr schedule
        lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
    else:  # stepwise lr schedule
        for milestone in args.schedule:  # default=[120, 160]
            lr *= 0.1 if epoch >= milestone else 1.  # 在 120 和 160 个 epoch 时学习率乘 0.1
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr  # 更新各 group 的优化器参数

4.1 Linear Classification Protocol

        我们首先验证了我们的方法 —— 通过对经冻结特征的线性分类,遵循一个普遍的协议。在本小节中,我们对 IN-1M 进行无监督预训练。然后冻结特征,训练一个有监督线性分类器 (FC + Softmax)。我们在一个 ResNet 的全局平均池化 (GAP) 特征上训练 100 个 epochs 该分类器。我们报告了 ImageNet 验证集上的 1-crop,top-1 分类准确率。

# https://github.com/facebookresearch/moco/blob/main/main_lincls.py

def main_worker(gpu, ngpus_per_node, args):
    # ...

    # create model
    print("=> creating model '{}'".format(args.arch))
    model = models.__dict__[args.arch]()

    # freeze all layers but the last fc
    for name, param in model.named_parameters():
        if name not in ['fc.weight', 'fc.bias']:
            param.requires_grad = False  # stop computing gradients to freeze layers

    # init the fc layer
    model.fc.weight.data.normal_(mean=0.0, std=0.01)
    model.fc.bias.data.zero_()

    # ...

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    # optimize only the linear classifier
    parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
    assert len(parameters) == 2  # fc.weight, fc.bias
    optimizer = torch.optim.SGD(parameters, 
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

def sanity_check(state_dict, pretrained_weights):
    """
    Linear classifier should not change any weights other than the linear layer.
    This sanity check asserts nothing wrong happens (e.g., BN stats updated).
    """
    print("=> loading '{}' for sanity check".format(pretrained_weights))
    checkpoint = torch.load(pretrained_weights, map_location="cpu")
    state_dict_pre = checkpoint['state_dict']

    for k in list(state_dict.keys()):
        # only ignore fc layer
        if 'fc.weight' in k or 'fc.bias' in k:
            continue

        # name in pretrained model
        k_pre = 'module.encoder_q.' + k[len('module.'):] \
            if k.startswith('module.') else 'module.encoder_q.' + k

        assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
            '{} is changed in linear classifier training.'.format(k)

    print("=> sanity check passed.")

        对于该分类器,实施网格搜索,发现最优初始学习率为 30 且权值衰减为 0。这些超参数在本小节中介绍的所有消融项中始终表现良好。这些超参数值意味着特征分布 (例如,规模 (magnitudes)) 可能与 ImageNet 有监督训练有本质上的差异,我们将在 4.2 节中重新讨论该问题。

        更多实验分析见原文。


总结 ☆

  • 虽然对比学习无需标签,但模型仍需知道图片中哪些相似、哪些不相似才可以训练,于是需要人为设计各种巧妙的代理任务来实现该目的。
  • 如同一图像的不同裁剪和数据增广的结果,虽有差异但仍被视为具有相似的语义信息,从而作为匹配的 正样本对,此时原图即为 基准点/锚点 (anchor),衍生的新图即为 正样本;与其他图像产生的样本即均为 负样本对
  • 从某种程度上,数据集中每一图像 (及其产生的样本) 可以视为 一个单独的类别,故对 IM-1K 而言,类别数不是 1000 而是 128 万
  • 划分正、负样本后,即可通过编码器编码所有正、负样本以提取嵌入特征。
  • 由于所有正、负样本均是基于 anchor 而言的,故 anchor 通常单独配置 一个 编码器 (如本文的 query 编码器),其他的正、负样本配置 另一个 编码器 (如本文的 key 编码器)。
  • 当然,query 编码器 和 key 编码器可以 完全相同部分相同 或 完全不同。但不同的编码器之间必须相似,以确保编码得到的特征具有一致性和比较的意义。
  • 获取到 anchor 和正、负样本的嵌入特征后,只需衡量它们的相似度,并 缩小 anchor 与正样本对的嵌入特征距离,拉大 anchor 与负样本的嵌入特征距离。
  • 确定代理任务并知道如何定义正、负样本后,就要用 目标函数 来告诉模型如何学习,如常见的对比学习目标函数 NCE Loss 等。
  • 事实上,对比学习最大的特性就是方法 灵活,可以设置各种不同的代理任务。只要找到或设计一种合理的方式来 定义正、负样本,就能走完剩下的一些较标准化的流程,从而实施对比学习。

实现

# https://github.com/facebookresearch/moco/blob/main/moco/builder.py

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import torch.nn as nn


class MoCo(nn.Module):
    """
    Build a MoCo model with: a query encoder, a key encoder, and a queue
    https://arxiv.org/abs/1911.05722
    """
    def __init__(self, base_encoder, dim=128, K=65536, m=0.999, T=0.07, mlp=False):
        """
        dim: feature dimension (default: 128)
        K: queue size; number of negative keys (default: 65536)
        m: moco momentum of updating key encoder (default: 0.999)
        T: softmax temperature (default: 0.07)
        """
        super(MoCo, self).__init__()

        self.K = K
        self.m = m
        self.T = T

        # create the encoders
        # num_classes is the output fc dimension
        self.encoder_q = base_encoder(num_classes=dim)
        self.encoder_k = base_encoder(num_classes=dim)

        if mlp:  # hack: brute-force replacement
            dim_mlp = self.encoder_q.fc.weight.shape[1]
            self.encoder_q.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_q.fc)
            self.encoder_k.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_k.fc)

        for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
            param_k.data.copy_(param_q.data)  # initialize
            param_k.requires_grad = False  # not update by gradient

        # create the queue
        self.register_buffer("queue", torch.randn(dim, K))
        self.queue = nn.functional.normalize(self.queue, dim=0)

        self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))

    @torch.no_grad()
    def _momentum_update_key_encoder(self):
        """
        Momentum update of the key encoder
        """
        for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
            param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)

    @torch.no_grad()
    def _dequeue_and_enqueue(self, keys):
        # gather keys before updating queue
        keys = concat_all_gather(keys)

        batch_size = keys.shape[0]

        ptr = int(self.queue_ptr)
        assert self.K % batch_size == 0  # for simplicity

        # replace the keys at ptr (dequeue and enqueue)
        self.queue[:, ptr:ptr + batch_size] = keys.T
        ptr = (ptr + batch_size) % self.K  # move pointer

        self.queue_ptr[0] = ptr

    @torch.no_grad()
    def _batch_shuffle_ddp(self, x):
        """
        Batch shuffle, for making use of BatchNorm.
        *** Only support DistributedDataParallel (DDP) model. ***
        """
        # gather from all gpus
        batch_size_this = x.shape[0]
        x_gather = concat_all_gather(x)
        batch_size_all = x_gather.shape[0]

        num_gpus = batch_size_all // batch_size_this

        # random shuffle index
        idx_shuffle = torch.randperm(batch_size_all).cuda()

        # broadcast to all gpus
        torch.distributed.broadcast(idx_shuffle, src=0)

        # index for restoring
        idx_unshuffle = torch.argsort(idx_shuffle)

        # shuffled index for this gpu
        gpu_idx = torch.distributed.get_rank()
        idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx]

        return x_gather[idx_this], idx_unshuffle

    @torch.no_grad()
    def _batch_unshuffle_ddp(self, x, idx_unshuffle):
        """
        Undo batch shuffle.
        *** Only support DistributedDataParallel (DDP) model. ***
        """
        # gather from all gpus
        batch_size_this = x.shape[0]
        x_gather = concat_all_gather(x)
        batch_size_all = x_gather.shape[0]

        num_gpus = batch_size_all // batch_size_this

        # restored index for this gpu
        gpu_idx = torch.distributed.get_rank()
        idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx]

        return x_gather[idx_this]

    def forward(self, im_q, im_k):
        """
        Input:
            im_q: a batch of query images
            im_k: a batch of key images
        Output:
            logits, targets
        """

        # compute query features
        q = self.encoder_q(im_q)  # queries: NxC
        q = nn.functional.normalize(q, dim=1)

        # compute key features
        with torch.no_grad():  # no gradient to keys
            self._momentum_update_key_encoder()  # update the key encoder

            # shuffle for making use of BN
            im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k)

            k = self.encoder_k(im_k)  # keys: NxC
            k = nn.functional.normalize(k, dim=1)

            # undo shuffle
            k = self._batch_unshuffle_ddp(k, idx_unshuffle)

        # compute logits
        # Einstein sum is more intuitive
        # positive logits: Nx1
        l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
        # negative logits: NxK
        l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()])

        # logits: Nx(1+K)
        logits = torch.cat([l_pos, l_neg], dim=1)

        # apply temperature
        logits /= self.T

        # labels: positive key indicators
        labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()

        # dequeue and enqueue
        self._dequeue_and_enqueue(k)

        return logits, labels


# utils
@torch.no_grad()
def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    tensors_gather = [torch.ones_like(tensor)
        for _ in range(torch.distributed.get_world_size())]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output

参考资料

李沐论文精读系列三:MoCo、对比学习综述(MoCov1/v2/v3、SimCLR v1/v2、DINO等)

  • 7
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值