[2021年秋招笔试记录]OPPO_8.29_机器学习算法A卷

本文深入解析了机器学习中的选择题、填空题和简答题,涵盖了卷积核计算、权重向量形状、皮尔逊相关系数、L1和L2距离等知识点,对比了KNN和K-means算法的区别,探讨了MSE和logloss的表达式及其应用场景,并解释了泛化能力和FM模型的优势。

题型

  • 选择题(机器学习)
  • 填空题(卷积核计算;输入层(8个神经元)到隐藏层(5个)权重向量的shape;隐藏层到输出层(1个)的权重向量shape;两个向量的皮尔逊相关系数;两个向量的L1距离和L2距离)
  • 简答题
    • KNN和K-means的三个区别;K的含义有什么不同
    • MSE和logloss表达式;适用场景
    • 泛化能力指的是什么;FM表达式;FM为什么比LR泛化能力好
  • 编程题1 - 不调试;手写
    • 输入 [[‘aa’,‘bb’,‘cc’], [‘AA’,‘BB’], [‘11’,‘22’]]
    • 输出:[[‘aa’, ‘AA’, ‘11’], [‘aa’, ‘AA’, ‘22’], [‘aa’, ‘BB’, ‘11’], [‘aa’, ‘BB’, ‘22’], [‘bb’, ‘AA’, ‘11’], [‘bb’, ‘AA’, ‘22’], [‘bb’, ‘BB’, ‘11’], [‘bb’, ‘BB’, ‘22’], [‘cc’, ‘AA’, ‘11’], [‘cc’, ‘AA’, ‘22’], [‘cc’, ‘BB’, ‘11’], [‘cc’, ‘BB’, ‘22’]]
  • 编程题2 跳台阶问题;和剑指offer上的跳台阶差不多
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值