Widget Factory
应该是第一个 求整数解的高斯消元吧;
题意: n 种工具,m 个员工,给定每个员工的工作时间(开始工作和被开除的时间),给定该员工加工的工具种类,求出每个工具加工需要的时间。规定每个工具加工时间在3~9 天;
刚开始对模板也不怎么熟,所以搞了好长时间。
事实上题目可以抽象成 n 个变元,m 个方程,在模7 的意义下求整数解
(即: 每次记录时间可以表示 (x2-x1)%7+7)%7 );
主要是要知道 A[][]数组的意思 : A[i][n] —其实是每个方程的等号右边,即每个方程的值。
A[i][j] —表示每个方程左边的每项的常数系数;
这样就可以建好增广矩阵,进而代入模板(模板其实也不好代入,如果你不懂他怎么运行的),得出解;
#pragma comment(linker, "/STACK:1024000000,1024000000")
//#include <bits/stdc++.h>
#include<string>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
#define maxn 501
#define INF 0x3f3f3f3f
using namespace std;
int A[maxn][maxn];//增广矩阵。
int x[maxn];
int free_x[maxn];
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
int lcm(int a,int b) {
return a/gcd(a,b)*b;
}
int Gauss(int equ,int var) {
int k,col,max_r,cnt=0;
for(col=0,k=0;k<equ&&col<var;k++,col++) {
max_r=k;
for(int i=k+1;i<equ;i++)
if(abs(A[i][col])>abs(A[max_r][col])) max_r=i;
if(max_r!=k)
for(int j=col;j<=var;j++) swap(A[k][j],A[max_r][j]);
if(A[k][col]==0) {
k--;
free_x[cnt++]=col;
continue;
}
for(int i=k+1;i<equ;i++)
{
if(A[i][col])
{
int LCM=lcm(abs(A[i][col]),abs(A[k][col]));
int ta=LCM/abs(A[i][col]);
int tb=LCM/abs(A[k][col]);
if(A[i][col]*A[k][col]<0) tb=-tb;
for(int j=col;j<=var;j++)
{
A[i][j]=((A[i][j]*ta-A[k][j]*tb)%7+7)%7;
}
}
}
}
for(int i=k;i<equ;i++)
{
if(A[i][col]) return -1;
}
if(k<var) return var-k;
for(int i=var-1;i>=0;i--)
{
int tmp=A[i][var];
for(int j=i+1;j<var;j++)
{
if(A[i][j]) tmp=((tmp-A[i][j]*x[j])%7+7)%7;
}
while(tmp%A[i][i]) tmp+=7;
x[i]=(tmp/A[i][i])%7;
}
return 0;
}
int Change(char s[])
{
if(!strcmp(s,"MON")) return 1;
else if(!strcmp(s,"TUE")) return 2;
else if(!strcmp(s,"WED")) return 3;
else if(!strcmp(s,"THU")) return 4;
else if(!strcmp(s,"FRI")) return 5;
else if(!strcmp(s,"SAT")) return 6;
else return 7;
}
int main()
{
int n,m;
char s1[10],s2[10];
while(scanf("%d%d",&n,&m)&&(n+m))
{
memset(A,0,sizeof A);
for(int i=0;i<m;i++)
{
int k;
scanf("%d %s %s",&k,s1,s2);
A[i][n]=((Change(s2)-Change(s1)+1)%7+7)%7;
for(int j=0;j<k;j++)
{
int y;
scanf("%d",&y);
A[i][y-1]=(A[i][y-1]+1)%7;
}
}
int ans=Gauss(m,n);
if(ans==-1) printf("Inconsistent data.\n");
else if(ans) printf("Multiple solutions.\n");
else
{
for(int i=0;i<n-1;i++)
{
if(x[i]<3) x[i]+=7;
printf("%d ",x[i]);
}
if(x[n-1]<3) x[n-1]+=7;
printf("%d\n",x[n-1]);
}
}
return 0;
}