- 博客(4)
- 收藏
- 关注
原创 Torch.cat用法与reshape恢复
torch.cat将向量拼接之后,恢复为原向量。reshape是以后面数量为单元划分的,例如[bt*3,5]如果reshape为[bt,3,5]的话就是以3*5这么个数量去从头开始划分。import torcha = torch.ones(1,5)b = 2 * torch.ones(1,5)A= torch.cat([a,b],dim=0)c = 3 * torch.ones(1,5)d = 4 * torch.ones(1,5)B= torch.cat([c,d],dim=
2021-04-03 12:58:25 916
原创 frp与阿里云服务器实现内网穿透
原因:主要是由于之前实现内网穿透的autossh工具太不稳定,连接总断........借鉴博客:https://cloud.tencent.com/developer/article/1452168我的配置: ---公网服务器是阿里云轻量级应用服务器linux系统,这里是作为frp的服务端。 ----内网服务器也是linux,作为frp的客户端。步骤:1、服务端和客户端下载frp(https://github.com/fatedier/frp/releases),由于...
2021-03-22 23:48:58 391
原创 pytorch中nn.CrossEntropyLoss使用注意事项
pytorch中nn.CrossEntropyLoss使用注意事项Loss的数学表达公式:使用代码样例:# 这样展开就相当于每个词正确的类别和预测的整个词表概率分布进行对应criterion = nn.CrossEntropyLoss(ignore_index=2).to(device) # ignore_index是指忽略真实标签中的类别vocab_size = pre.shape[-1]trg = trg[:,1:]trg_tag = trg.reshape(-1).to(d
2020-12-07 14:46:26 1820
原创 动态规划--爬楼梯
题目:假设你正在爬楼梯。需要 n阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?idea:假设爬到第i个阶梯有dp[i]个方法,那么到达阶梯前要么在第i-1个阶梯,要么在i-2个阶梯; 所以,dp[i]=dp[i-1]+dp[i-2];code:int climbStairs(int n) { cons...
2019-07-26 16:51:12 127
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人