python数据分析基础-series基本统计运算,数据运算和比较运算

本文深入探讨了使用Python的Pandas库进行DataFrame数据运算的方法,包括加、减、乘、除等基本运算,以及求和、平均值、最大值、中位数、众数、方差、标准差等统计分析。通过具体实例,读者可以学习如何对数据进行高效处理和分析。

linux+pycharm+anaconda`

#两个series数据运算 + —  × / **
num=pd.DataFrame([[1,2,3],[3,4,6]],columns=["数据一",'数据二','数据三'])
 #加
num["数据一"]+num["数据二"]
#减
num["数据二"]-num["数据一"]
#乘法
num["数据三"]*num["数据一"]
#除法
num["数据三"]/num["数据一"]
#幂
num["数据三"]**num["数据一"]

#比较运算,返回bool值组成的series值
num["数据三"]>num["数据一"]
num["数据三"]<num["数据一"]
num["数据三"]==num["数据一"]
num["数据三"]!=num["数据一"]

#sum()求和对某与区域内数据进行累加
num.sum(axis=1)
num.sum(axis=0)
num["数据三"].sum()

#mena()求均值
num.mean(axis=1)
#求最大max()求最小min()
num["数据三"].min()
num.max(axis=0)

#求中位数
num.median(axis=1)

#众数
num.mode(axis=0)
num.mode()

#求方差
num.var(axis=1)

#标准差
num.std()

#四分位数
num.quantile(0.25)
num.quantile(0.75,axis=1)

#相关性运算
num["数据一"].corr(num["数据二"])
#两两间的相关性
num.corr()

data=pd.DataFrame([[20,99999,6],[30,999999,6],[20,999994],[27],[30,999999,6]])
 data.columns=["年龄","收入","家属数"]
data.index=[i for i in range(5)]
#count运算,统计非空数据个数
data.count()
data["家属数"].count()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值