自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 资源 (5)
  • 收藏
  • 关注

翻译 pandas笔记-DataFrame(4)

16、Sparse accessorSparse-dtype specific methods and attributes are provided under the DataFrame.sparse accessor.DataFrame.sparse.densityRatio of non-sparse points to total (dense) data points.DataFrame.sparse.from_spmatrix(data[, …])Create a new

2021-10-18 19:02:10 499

翻译 pandas笔记-DataFrame(3)

11、Combining / comparing / joining / mergingDataFrame.append() # 将other的行追加到调用者的末尾,返回一个新对象。DataFrame.assign() # 将新列分配给数据帧。DataFrame.compare() # 与另一个数据帧进行比较并显示差异。DataFrame.join() # 连接另一个DataFrame的列。DataFrame.merge() # 使用数据库样式联接合并DataFrame或命名Series对象。D

2021-10-17 21:23:16 246

翻译 pandas笔记-DataFrame(2)

6、Function application, GroupBy & windowDataFrame.apply() # 沿DataFrame的轴应用函数。DataFrame.applymap() # 将函数应用于Dataframe元素。DataFrame.pipe() # 应用函数 DataFrame.agg() # 在指定轴上使用一个或多个操作进行聚合。DataFrame.aggregate() # 在指定轴上使用一个或多个操作进行聚合。DataFrame.transform() #

2021-10-12 19:18:25 478

原创 mac安装wget

1、下载wget包点这添加链接描述2、解压缩tar -zxvf3、进入目录./configure4 遇到问题configure: error: Package requirements (gnutls) were not met:No package 'gnutls' foundConsider adjusting the PKG_CONFIG_PATH environment variable if you installed software in a non-standard

2021-10-02 14:07:14 796

翻译 pandas笔记-Series(4)

14、PlottingSeries.plot() # Series绘图存取器及方法Series.plot.area() # 绘制堆叠面积图。Series.plot.bar() # 垂直条形图。Series.plot.barh() # 做一个水平条形图。Series.plot.box() # 制作DataFrame列的方框图。Series.plot.density() # 使用高斯核生成核密度估计图。Series.plot.hist() # 绘DataFrame帧列的一个直方图。Series.

2021-09-26 23:14:03 188

翻译 pandas笔记- Series(3)

Combining / comparing / joining / merging¶Series.append(to_append[, ignore_index, …])Concatenate two or more Series.Series.compare(other[, align_axis, …])Compare to another Series and show the differences.Series.update(other)Modify Series in pla

2021-09-26 17:31:47 571

翻译 sklearn笔记-datasets Samples generator

datasets.make_biclusters()Generate an array with constant block diagonal structure for biclustering.datasets.make_blobs()Generate isotropic Gaussian blobs for clustering.datasets.make_checkerboard()Generate an array with block checkerboard struct

2021-09-25 10:00:15 562

翻译 pandas笔记-Input/output

1、文件类型可以读写的文件可是有:Pickling/Flat file/Clipboard/Excel/JSON/HTML/XML/Latex/HDFStore: PyTables (HDF5)/Feather/Parquet/ORC/SAS/SPSS/SQL/Google BigQuery/STATA自己可能用到的Pickling/Flat file/Excel/JSON/HTML/XML/SPSS/SQL2、常用举例2.1 Picklingread_pickle() # 从文件中加载p

2021-09-23 17:07:33 284

翻译 pandas笔记-DataFrame(1)

1、构建DataFrame() # 二维、大小可变、潜在异构的表格数据。具体事例2、属性和基础数据DataFrame.index # DataFrame的行索引DataFrame.columns # DataFrame的列索引DataFrame.dtypes # DataFrame每一列的数据类型DataFrame.info() # DataFrame的信息描述DataFrame.select_dtypes() # 基于列的数据类型,选择/排除DataFrame的数据集DataFrame

2021-09-23 16:21:55 360

翻译 pandas笔记-Series(2)

1、函数应用,聚合&windowSeries.apply() # 对系列的值调用函数。Series.agg() # 在指定轴上使用一个或多个操作进行聚合。Series.aggregate() # 在指定轴上使用一个或多个操作进行聚合。Series.transform() # 在使用转换值自行生成序列时调用func。Series.map() # 根据输入对应关系映射序列值。Series.groupby() # 使用映射器或一系列列对系列进行分组。Series.rolling() # 提供

2021-09-18 22:22:19 510

翻译 pandas笔记-Series(1)

1、构建Series() # 有轴标签的一维数据阵列(包括时间序列)。2、属性Series.index # 系列的索引(轴标签)。Series.array # 支持此系列或索引的数据的扩展数组。Series.values # 根据数据类型将序列返回为ndarray或类似ndarray。Series.dtype # 返回基础数据的dtype对象。Series.shape # 返回基础数据形状的元组。Series.nbytes # 返回基础数据中的字节数。Series.ndim # 根据定义

2021-09-17 16:15:58 246

翻译 sklearn.cluster笔记-聚类

sklearn.cluster模块收集流行的无监督聚类算法。1、类cluster.AffinityPropagation() # 执行数据的关联传播群集。cluster.AgglomerativeClustering() # 凝聚聚类cluster.Birch() # 实现了BIRCH聚类算法。cluster.DBSCAN() # 从向量数组或距离矩阵执行DBSCAN聚类。cluster.FeatureAgglomeration() # 结块特征。cluster.KMeans() # K-Me

2021-09-16 16:10:24 774

原创 teradata笔记-strtok_split_to_table

1、建表&插数CREATE TABLE tab (name varchar(5), str varchar(20));insert into tab VALUES (‘A’,’1234;4568;4567;456');insert into tab values (‘B’,’5432;;;;’);insert into tab values (‘C’,’5432,,,,’);insert into tab values (‘D’,’5432’);2、分割成表—备注 tokennum

2021-09-16 16:00:44 722

翻译 sklearn笔记-datasets Loaders

datasets.clear_data_home() # 删除数据主缓存的所有内容。datasets.dump_svmlight_file() # 以svmlight/libsvm文件格式转储数据集。datasets.fetch_20newsgroups() # 20个新闻组数据集中加载文件名和数据(分类)。datasets.fetch_20newsgroups_vectorized()# 加载并矢量化20个新闻组数据集(分类)。datasets.fetch_california_housin

2021-09-15 21:45:31 551

翻译 sklearn.base笔记-基础类和工具函数

1、基础类base.BaseEstimator # scikit中所有估计器的基类。base.BiclusterMixin # scikit中所有双聚类估计器的混合类。base.ClassifierMixin # scikit中所有分类器的混合类。base.ClusterMixin # scikit中所有聚类估计器的混合类。base.DensityMixin # scikit中所有密度估计器的混合类。base.RegressorMixin # scikit中所有回归估计器混合类。base.Tr

2021-09-15 14:23:10 608

原创 Excel常用函数

=IF (G2>20000,”优”,IF(G2>10000,”良”,”差"))=SUMIF(A2:A13,D2,B2:B13)A2:A13范围内,值为D2的所有行,B2:B13范围内求和=SUMIFS(D29:D35,D29:D35,">=10000",D29:D35,"<=15000")D29:D35范围内,满足条件>=10000,且 D29:D35范围内满足条件<=15000;求D29:D35范围的和=COUNTIF(A2:A13,”>50")

2021-09-14 20:25:29 80

翻译 pandas笔记-General functions 常用函数

1、数据操作melt() # DataFrame从宽到长格式的转变,选择性地保留标识符设置。pivot() # 返回按给定 索引/列值 组织的新DataFrame。pivot_table() # 创建电子表格样式的数据透视表作为DataFrame。crosstab() # 计算两个(或更多)因素的简单交叉表。cut() # 把一组数据转换为离散的间隔。qcut() # 基于分位数的离散化函数。merge() # 使用数据库样式联接合并DataFrame或Series。merge_ordere

2021-09-14 20:17:27 181

原创 sklearn常用接口

线性回归逻辑回归K近邻随机森林GBDTXGBoost

2021-09-14 08:33:36 263

原创 pandas笔记-数据拼接

1、concatpandas.concat(objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)事例s1 = pd.Series(['a', 'b'])s2 = pd.Series(['c', 'd'])pd.concat([s1, s2])输出0 a1 b0 c

2021-09-14 07:32:46 90

原创 pandas笔记-groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)by–以哪一个字段聚合,axis–横向 or 纵向,as_index–是否作为索引sort–是否排序事例:import pandas as pdimport numpy as npdict_obj = {'key1' : ['a', 'b', 'a', 'b',

2021-09-12 19:07:53 93

原创 pandas笔记-构建DataFrame

import pandas as pddic = { "序号" : pd.Series(range(1, 5), dtype = "int32"), "姓名" : ['张三','李四','王五','赵六'], "日期" : pd.Timestamp("20210921"), "科目" : ["Python", "Java", "C++", "C"], "性别" : np.array(['男','女'] * 2, dtype="str"), "班级" : "

2021-09-12 15:32:57 298

python基础教程-学习笔记.zip

python基础教程--学习笔记

2021-10-17

MySQL 必知必会 21-30.pdf

MySQL 必知必会 21-30章总结摘要

2021-10-04

MySQL 必知必会11-20.pdf

mysql必知必会11-20章总结摘要

2021-10-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除