- 博客(21)
- 资源 (5)
- 收藏
- 关注
翻译 pandas笔记-DataFrame(4)
16、Sparse accessorSparse-dtype specific methods and attributes are provided under the DataFrame.sparse accessor.DataFrame.sparse.densityRatio of non-sparse points to total (dense) data points.DataFrame.sparse.from_spmatrix(data[, …])Create a new
2021-10-18 19:02:10 499
翻译 pandas笔记-DataFrame(3)
11、Combining / comparing / joining / mergingDataFrame.append() # 将other的行追加到调用者的末尾,返回一个新对象。DataFrame.assign() # 将新列分配给数据帧。DataFrame.compare() # 与另一个数据帧进行比较并显示差异。DataFrame.join() # 连接另一个DataFrame的列。DataFrame.merge() # 使用数据库样式联接合并DataFrame或命名Series对象。D
2021-10-17 21:23:16 246
翻译 pandas笔记-DataFrame(2)
6、Function application, GroupBy & windowDataFrame.apply() # 沿DataFrame的轴应用函数。DataFrame.applymap() # 将函数应用于Dataframe元素。DataFrame.pipe() # 应用函数 DataFrame.agg() # 在指定轴上使用一个或多个操作进行聚合。DataFrame.aggregate() # 在指定轴上使用一个或多个操作进行聚合。DataFrame.transform() #
2021-10-12 19:18:25 478
原创 mac安装wget
1、下载wget包点这添加链接描述2、解压缩tar -zxvf3、进入目录./configure4 遇到问题configure: error: Package requirements (gnutls) were not met:No package 'gnutls' foundConsider adjusting the PKG_CONFIG_PATH environment variable if you installed software in a non-standard
2021-10-02 14:07:14 796
翻译 pandas笔记-Series(4)
14、PlottingSeries.plot() # Series绘图存取器及方法Series.plot.area() # 绘制堆叠面积图。Series.plot.bar() # 垂直条形图。Series.plot.barh() # 做一个水平条形图。Series.plot.box() # 制作DataFrame列的方框图。Series.plot.density() # 使用高斯核生成核密度估计图。Series.plot.hist() # 绘DataFrame帧列的一个直方图。Series.
2021-09-26 23:14:03 188
翻译 pandas笔记- Series(3)
Combining / comparing / joining / merging¶Series.append(to_append[, ignore_index, …])Concatenate two or more Series.Series.compare(other[, align_axis, …])Compare to another Series and show the differences.Series.update(other)Modify Series in pla
2021-09-26 17:31:47 571
翻译 sklearn笔记-datasets Samples generator
datasets.make_biclusters()Generate an array with constant block diagonal structure for biclustering.datasets.make_blobs()Generate isotropic Gaussian blobs for clustering.datasets.make_checkerboard()Generate an array with block checkerboard struct
2021-09-25 10:00:15 562
翻译 pandas笔记-Input/output
1、文件类型可以读写的文件可是有:Pickling/Flat file/Clipboard/Excel/JSON/HTML/XML/Latex/HDFStore: PyTables (HDF5)/Feather/Parquet/ORC/SAS/SPSS/SQL/Google BigQuery/STATA自己可能用到的Pickling/Flat file/Excel/JSON/HTML/XML/SPSS/SQL2、常用举例2.1 Picklingread_pickle() # 从文件中加载p
2021-09-23 17:07:33 284
翻译 pandas笔记-DataFrame(1)
1、构建DataFrame() # 二维、大小可变、潜在异构的表格数据。具体事例2、属性和基础数据DataFrame.index # DataFrame的行索引DataFrame.columns # DataFrame的列索引DataFrame.dtypes # DataFrame每一列的数据类型DataFrame.info() # DataFrame的信息描述DataFrame.select_dtypes() # 基于列的数据类型,选择/排除DataFrame的数据集DataFrame
2021-09-23 16:21:55 360
翻译 pandas笔记-Series(2)
1、函数应用,聚合&windowSeries.apply() # 对系列的值调用函数。Series.agg() # 在指定轴上使用一个或多个操作进行聚合。Series.aggregate() # 在指定轴上使用一个或多个操作进行聚合。Series.transform() # 在使用转换值自行生成序列时调用func。Series.map() # 根据输入对应关系映射序列值。Series.groupby() # 使用映射器或一系列列对系列进行分组。Series.rolling() # 提供
2021-09-18 22:22:19 510
翻译 pandas笔记-Series(1)
1、构建Series() # 有轴标签的一维数据阵列(包括时间序列)。2、属性Series.index # 系列的索引(轴标签)。Series.array # 支持此系列或索引的数据的扩展数组。Series.values # 根据数据类型将序列返回为ndarray或类似ndarray。Series.dtype # 返回基础数据的dtype对象。Series.shape # 返回基础数据形状的元组。Series.nbytes # 返回基础数据中的字节数。Series.ndim # 根据定义
2021-09-17 16:15:58 246
翻译 sklearn.cluster笔记-聚类
sklearn.cluster模块收集流行的无监督聚类算法。1、类cluster.AffinityPropagation() # 执行数据的关联传播群集。cluster.AgglomerativeClustering() # 凝聚聚类cluster.Birch() # 实现了BIRCH聚类算法。cluster.DBSCAN() # 从向量数组或距离矩阵执行DBSCAN聚类。cluster.FeatureAgglomeration() # 结块特征。cluster.KMeans() # K-Me
2021-09-16 16:10:24 774
原创 teradata笔记-strtok_split_to_table
1、建表&插数CREATE TABLE tab (name varchar(5), str varchar(20));insert into tab VALUES (‘A’,’1234;4568;4567;456');insert into tab values (‘B’,’5432;;;;’);insert into tab values (‘C’,’5432,,,,’);insert into tab values (‘D’,’5432’);2、分割成表—备注 tokennum
2021-09-16 16:00:44 722
翻译 sklearn笔记-datasets Loaders
datasets.clear_data_home() # 删除数据主缓存的所有内容。datasets.dump_svmlight_file() # 以svmlight/libsvm文件格式转储数据集。datasets.fetch_20newsgroups() # 20个新闻组数据集中加载文件名和数据(分类)。datasets.fetch_20newsgroups_vectorized()# 加载并矢量化20个新闻组数据集(分类)。datasets.fetch_california_housin
2021-09-15 21:45:31 551
翻译 sklearn.base笔记-基础类和工具函数
1、基础类base.BaseEstimator # scikit中所有估计器的基类。base.BiclusterMixin # scikit中所有双聚类估计器的混合类。base.ClassifierMixin # scikit中所有分类器的混合类。base.ClusterMixin # scikit中所有聚类估计器的混合类。base.DensityMixin # scikit中所有密度估计器的混合类。base.RegressorMixin # scikit中所有回归估计器混合类。base.Tr
2021-09-15 14:23:10 608
原创 Excel常用函数
=IF (G2>20000,”优”,IF(G2>10000,”良”,”差"))=SUMIF(A2:A13,D2,B2:B13)A2:A13范围内,值为D2的所有行,B2:B13范围内求和=SUMIFS(D29:D35,D29:D35,">=10000",D29:D35,"<=15000")D29:D35范围内,满足条件>=10000,且 D29:D35范围内满足条件<=15000;求D29:D35范围的和=COUNTIF(A2:A13,”>50")
2021-09-14 20:25:29 80
翻译 pandas笔记-General functions 常用函数
1、数据操作melt() # DataFrame从宽到长格式的转变,选择性地保留标识符设置。pivot() # 返回按给定 索引/列值 组织的新DataFrame。pivot_table() # 创建电子表格样式的数据透视表作为DataFrame。crosstab() # 计算两个(或更多)因素的简单交叉表。cut() # 把一组数据转换为离散的间隔。qcut() # 基于分位数的离散化函数。merge() # 使用数据库样式联接合并DataFrame或Series。merge_ordere
2021-09-14 20:17:27 181
原创 pandas笔记-数据拼接
1、concatpandas.concat(objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)事例s1 = pd.Series(['a', 'b'])s2 = pd.Series(['c', 'd'])pd.concat([s1, s2])输出0 a1 b0 c
2021-09-14 07:32:46 90
原创 pandas笔记-groupby
DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)by–以哪一个字段聚合,axis–横向 or 纵向,as_index–是否作为索引sort–是否排序事例:import pandas as pdimport numpy as npdict_obj = {'key1' : ['a', 'b', 'a', 'b',
2021-09-12 19:07:53 93
原创 pandas笔记-构建DataFrame
import pandas as pddic = { "序号" : pd.Series(range(1, 5), dtype = "int32"), "姓名" : ['张三','李四','王五','赵六'], "日期" : pd.Timestamp("20210921"), "科目" : ["Python", "Java", "C++", "C"], "性别" : np.array(['男','女'] * 2, dtype="str"), "班级" : "
2021-09-12 15:32:57 298
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人