A guide to convolution arithmetic for deep learning:卷积 + 反卷积 + 空洞卷积

本文深入探讨了深度学习中的卷积运算,包括离散卷积、池化、无padding卷积、带padding卷积、反卷积以及空洞卷积。通过具体的例子解释了卷积核大小、步长和填充如何影响输出尺寸,并介绍了反卷积在上采样中的应用以及空洞卷积如何扩大感受野。
摘要由CSDN通过智能技术生成

1.1 离散卷积(conv)

i (output),k (kernel_size),   s (stride),    p (pooling),   o (output)

1.2 池化(pooling)

i,     k,     s,     o

2.卷积(conv)

2.1  no padding

o = ( i - k ) / s  + 1      # 向下取整

2.2 pdding

o = ( i - k + 2*p ) / s   +1    p = 2/k  或 p=k-1  # 向下取整

3.反卷积(deconv/transposed conv/ fractionally strided conv)

一般反卷积在decoding时使用,大多时候用于上采样,为了减少棋盘效应(伪影),k取偶数(例,k=4,s=2,deconv后特征长、宽变为原来2倍)

A guide to convolution arithmetic for deep learning

中以K=3为例,W矩阵实际运算时变为:

卷积:O = C * I     (C: 4x16     I:4x4, reshape为 16x1 ,卷积得到O:4x1, rehshape 为 2x2 )   4x4--------->2x2

反卷积:I = C^{T} * O  (转置卷积由来)     (C^{T}: 16x4    O:2x2,  rehsape成  4x1, I:16x1, reshape为4x4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值