题目如上,接下来我们来分析一下
- 最简单的方法就是,先把10001-999999的所有回文数找出来,然后排序
- 可想而知,找到所有回文数就需要循环999999-10001次,然而这个题的测试还要求运行时间尽可能少
- 题的难点是控制时间,减少时间复杂度
废话不多说了,下面开始我的思路
- 首先这个题给了5 和 6 位数的回文数,那么我们是不是可以直接把所有回文数给找出来?而不去一个一个判断?
- 答案是肯定的 代码如下
int sum;
cin>>sum;
for(int i=1;i<=9;i++)
{
for(int j=0;j<=9;j++)
{
for(int k=0;k<=9;k++)
{
cout<<i<<j<<k<<j<<i<<endl;
}
}
}
- 这不就解决了么,直接找出了所有回文数(穷举)
- 然而在仔细想想,我们已经知道所有数字的和了啊!!那么中间的百位上的数还用循环么?
- 改进后代码如下
int sum;
cin>>sum;
for(int i=1;i<=9;i++)
{
for(int j=0;j<=9;j++)
{
if((sum-i*2-j*2)<=9 && (sum-i*2-j*2>=0))
{
cout<<i<<j<<sum-i*2-j*2<<j<<i<<endl;
}
}
}
- 完美解决有没有?最重要的是,减少了10倍的时间复杂度,9x10x10->9x10。所有的回文数还是升序排列的。
- 6 位数的思路与 5 位数一致,只是余下的是两个相等的数的和(所以必定是偶数),只需要判断 是否介于0-18就可以了。不过多赘述,代码如下
for(int i=1;i<=9;i++)
{
for(int j=0;j<=9;j++)
{
int temp=sum-i*2-j*2;
if(temp%2==0)
{
if(temp<=18&&temp>=0)
{
cout<<i<<j<<temp/2<<temp/2<<j<<i<<endl;
}
}
}
}
思考
- 上述方法是否就不能再减少时间复杂度呢?