1534. 统计好三元组

在这里插入图片描述

  1. 三重循环O(N^3),O(1)
  2. 首先用一个双重循环筛选出满足|arr[j] - arr[k]| <= b的 j 和 k,再从中筛选出满足如下两个条件的 i:i<j|arr[i] - arr[j]| <= a,|arr[i] - arr[k]| <= c。而此时不必再遍历数组完成查找。我们可以维护一个 arr[i] 频次数组的前缀和 pre,即pre[i]=k表示 arr 数组中小于等于 i 的数有 k 个,满足第二个条件的数的个数即为pre[rb]-pre[lb-1]。又有,我们在每个 j 循环的末尾才更新 pre 数组,这样就保证我们每次是在小于 j 的数中查找的。O(N^2+N*S),O(S)
class Solution:
    def countGoodTriplets(self, arr: List[int], a: int, b: int, c: int) -> int:
        ans = 0
        l = len(arr)
        pre = [0]*1001 #pre[i]=k 表示小于等于i的元素有k个

        for j in range(l):
            for k in range(j+1,l):
                if abs(arr[j]-arr[k])<=b:
                    lb = max(0,arr[j]-a,arr[k]-c)
                    rb = min(1000,arr[j]+a,arr[k]+c)
                    if rb>=lb:
                        ans+=pre[rb]-pre[lb-1] if lb>0 else pre[rb]
                    
            for i in range(arr[j],1001):
                pre[i]+=1
        return ans

当S比较大的时候,可以采用树状数组。

class BIT:
    def __init__(self, n):
        self.n = n  # n为原数组的长度
        self.tree = [0] * (n + 1)

    @staticmethod
    def lowbit(x):
        return x & (-x)

    def query(self, idx):
        ret = 0
        while idx > 0:
            ret += self.tree[idx]
            idx -= BIT.lowbit(idx)
        return ret

    def update(self, idx, v):  # v是更新前后的插值
        while idx <= self.n:
            self.tree[idx] += v
            idx += BIT.lowbit(idx)


class Solution:
    def countGoodTriplets(self, arr: List[int], a: int, b: int, c: int) -> int:
        ans = 0
        l = len(arr)
        bit = BIT(1002)
        
        for j in range(l):
            for k in range(j+1,l):
                if abs(arr[j]-arr[k])<=b:
                    lb = max(0,arr[j]-a,arr[k]-c)
                    rb = min(1001,arr[j]+a,arr[k]+c)
                    if rb>=lb:
                        ans+=bit.query(rb+1)-bit.query(lb) if lb>0 else bit.query(rb+1)
                    
            bit.update(arr[j]+1,1)
        return ans



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值