day15|各种遍历的应用

相关题目:
层次遍历会一打十
反转二叉树
对称二叉树

层次遍历会一打十

自底向上的层序遍历

在这里插入图片描述
实现思路:层次遍历二叉树,将遍历后的结果revers即可

public List<List<Integer>> levelOrderBottom(TreeNode root) {
        List<List<Integer>> res = new ArrayList<>();
        Queue<TreeNode> que = new ArrayDeque<>();
        if (root == null) {
            return res;
        }
        que.offer(root);
        int size = 0;
        while (!que.isEmpty()) {
            size = que.size();
            List<Integer> list = new ArrayList<>();
            while (size > 0) {
                TreeNode cur = que.poll();
                list.add(cur.val);
                if (cur.left != null) {
                    que.offer(cur.left);
                }
                if (cur.right != null) {
                    que.offer(cur.right);
                }

                size--;
            }
            res.add(list);
        }
        Collections.reverse(res);
        return res;
    }

输出二叉树的右视图节点

在这里插入图片描述
实现思路:层次遍历二叉树,记录二叉树每一层的节点数,到达该层最后一个节点时,将其加入到结果集即可

public List<Integer> rightSideView(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        if(root == null){
            return res;
        }
        Queue<TreeNode> que = new ArrayDeque<>();
        que.offer(root);
        int size = 0;
        while(!que.isEmpty()){
            size = que.size();
            while(size>0){
                TreeNode cur = que.poll();
                //遍历到该层最后一个节点
                if(size == 1){
                    res.add(cur.val);
                }
                if(cur.left!=null){
                    que.offer(cur.left);
                }
                if(cur.right!=null){
                    que.offer(cur.right);
                }
                size--;
            }
        }
        return res;
    }

二叉树每层的平均值

在这里插入图片描述
实现思路:层次遍历二叉树,计算每一层的平均值,注意:每层数之和及平均值的数据类型

public List<Double> averageOfLevels(TreeNode root) {
        List<Double> res = new ArrayList<>();
        Queue<TreeNode> que = new ArrayDeque<>();
        if(root == null){
            return res;
        }
        int size = 0;
        que.offer(root);
        while(!que.isEmpty()){
            size = que.size();
            double sum = 0;
            for (int i = 0; i < size; i++) {
                TreeNode cur = que.poll();
                sum += cur.val;
                if(cur.left!=null){
                    que.offer(cur.left);
                }
                if(cur.right!=null){
                    que.offer(cur.right);
                }
            }
            res.add(sum/size);
        }
        return res;
    }

N叉树的·层次遍历

在这里插入图片描述

class Node {
    public int val;
    public List<Node> children;

    public Node() {
    }

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};

public class LevelOrderNode {
    public List<List<Integer>> levelOrder(Node root) {
        List<List<Integer>> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        Queue<Node> que = new ArrayDeque<>();
        que.offer(root);
        while (!que.isEmpty()) {
            int size = que.size();
            List<Integer> list = new ArrayList<>();
            for (int i = 0; i < size; i++) {
                Node cur = que.poll();
                list.add(cur.val);
                List<Node> children = cur.children;
                if (children == null || children.size() == 0) {
                    continue;
                }
                for (Node child : children) {
                    if (child != null) {
                        que.offer(child);
                    }
                }
            }
            res.add(list);
        }
        return res;
    }

}

在二叉树的每一行中找最大值

在这里插入图片描述
实现思路:层次遍历二叉树,记录每一层的最大值

public List<Integer> largestValues(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        if(root == null){
            return res;
        }
        Queue<TreeNode> que = new ArrayDeque<>();
        int size = 0;
        que.offer(root);
        while(!que.isEmpty()){
            size = que.size();
            int max = Integer.MIN_VALUE;
            while(size>0) {
                TreeNode cur = que.poll();
                max = Math.max(max,cur.val);
                if(cur.left!=null){
                    que.offer(cur.left);
                }
                if(cur.right!=null){
                    que.offer(cur.right);
                }
                size--;
            }
            res.add(max);
        }
        return res;
    }

填充每个节点的下一个右侧节点指针

在这里插入图片描述
实现思路:层次遍历二叉树,记录每层元素个数,遍历每层元素,元素个数大于1时,使其next指针指向队头元素;元素个数为1时,使其next指针指向null即可

class NodeText {
    public int val;
    public NodeText left;
    public NodeText right;
    public NodeText next;

    public NodeText() {}

    public NodeText(int _val) {
        val = _val;
    }

    public NodeText(int _val, NodeText _left, NodeText _right, NodeText _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
public class Connect {
    public NodeText connect(NodeText root) {
        Queue<NodeText> que = new ArrayDeque<>();
        if(root == null){
            return root;
        }
        que.offer(root);
        while(!que.isEmpty()){
            int size = que.size();
            while(size>0){
                NodeText cur = que.poll();
                if(size>1){
                    NodeText temp = que.peek();
                    cur.next = temp;
                }
                else{
                    cur.next =null;
                }
                if(cur.left!=null){
                    que.offer(cur.left);
                }
                if(cur.right!=null){
                    que.offer(cur.right);
                }
                size--;
            }
        }
        return root;
    }
}

求二叉树的最大深度

在这里插入图片描述
实现思路:层次遍历二叉树,记录树的层数

public int maxDepth(TreeNode root) {
        int maxDepth = 0;
        int size = 0;
        if(root == null){
            return 0;
        }
        Queue<TreeNode> que = new ArrayDeque<>();
        que.offer(root);
        while(!que.isEmpty()){
            maxDepth++;
            size = que.size();
            while(size>0){
                TreeNode cur = que.poll();
                if(cur.left!=null){
                    que.offer(cur.left);
                }
                if(cur.right!=null){
                    que.offer(cur.right);
                }
                size--;
            }
        }
        return maxDepth;
    }

求二叉树的最小深度

在这里插入图片描述

实现思路:层次遍历二叉树,当某个节点的左右孩子均为null时,输出该节点所在层数,及就是树的最小深度

public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int deep = 0;
        int size = 0;
        Queue<TreeNode> que = new ArrayDeque<>();
        que.offer(root);
        while (!que.isEmpty()) {
            deep++;
            size = que.size();
            while (size > 0) {
                TreeNode cur = que.poll();
                if (cur.left == null && cur.right == null) {
                    return deep;
                } else {
                    if (cur.left != null) {
                        que.offer(cur.left);
                    }
                    if (cur.right != null) {
                        que.offer(cur.right);
                    }
                }
                size--;
            }
        }
        return deep;
    }

反转二叉树(掌握递归遍历)

实现方法:使用前序遍历、后序遍历及其层次遍历均可实现
前序遍历实现方法:遍历中间节点,中间节点的左右孩子交换位置即可
后序遍历实现方法:遍历的左子树和右子树,交换中间节点左右孩子交换位置即可
层次遍历:遍历每一层的各个节点,反转各个节点的左右孩子即可

public class InvertTree extends TreeNode {
    public TreeNode invertTree(TreeNode root) {
        if(root == null){
            return null;
        }
//        //前序
//        swap(root);
//        invertTree(root.left);
//        invertTree(root.right);

//        //后序
//        invertTree(root.left);
//        invertTree(root.right);
//        swap(root);
        //层次遍历--迭代
        Queue<TreeNode> que = new ArrayDeque<>();
        int size = 0;
        que.offer(root);
        while(!que.isEmpty()){
            size = que.size();
            while(size>0){
                TreeNode cur = que.poll();
                swap(cur);
                if(cur.left!=null){
                    que.offer(cur.left);
                }
                if(cur.right!=null){
                    que.offer(cur.right);
                }
                size--;
            }
        }

        return root;
    }
    public void swap(TreeNode root){
        TreeNode temp = root.left;
        root.left = root.right;
        root.right = temp;
    }
}

对称二叉树

递归实现:
递归三部曲

  1. 确定递归函数的参数和返回值
    因为我们要比较的是根节点的两个子树是否是相互翻转的,进而判断这个树是不是对称树,所以要比较的是两个树,参数自然也是左子树节点和右子树节点。
    返回值自然是bool类型。
    代码如下:
    bool compare(TreeNode* left, TreeNode* right)
  2. 确定终止条件
    要比较两个节点数值相不相同,首先要把两个节点为空的情况弄清楚!否则后面比较数值的时候就会操作空指针了。
    节点为空的情况有:(注意我们比较的其实不是左孩子和右孩子,所以如下我称之为左节点右节点)
  • 左节点为空,右节点不为空,不对称,return false
  • 左不为空,右为空,不对称 return false
  • 左右都为空,对称,返回true
  • 左右都不为空,比较节点数值,不相同就return false
    代码如下:
if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
else if (left->val != right->val) return false; // 注意这里我没有使用else

注意上面最后一种情况,我没有使用else,而是else if, 因为我们把以上情况都排除之后,剩下的就是 左右节点都不为空,且数值相同的情况。
3. 确定单层递归的逻辑
此时才进入单层递归的逻辑,单层递归的逻辑就是处理 左右节点都不为空,且数值相同的情况。

  • 比较二叉树外侧是否对称 :传入的是左节点的左孩子,右节点的右孩子。
  • 比较内侧是否对称:传入左节点的右孩子,右节点的左孩子。

如果左右都对称就返回true ,有一侧不对称就返回false 。
实现过程:

class Solution {
    public boolean isSymmetric(TreeNode root) {
        if (root == null) {
            return true;
        }
        return compare(root.left,root.right);
    }

    //递归实现
    public boolean compare(TreeNode left, TreeNode right) {
        if (left == null && right != null) return false;
        else if (left != null && right == null) return false;
        else if (left != null && right != null && left.val != right.val) return false;
        else if (left == null && right == null) return true;
        boolean inside = compare(left.left, right.right);
        boolean outside = compare(left.right, right.left);
        return inside && outside;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值