Hive的简介

Hive的概念: 

①Hive是为了简化用户编写MapReduce程序而生成的一种框架,使用MapReduce做过数据分析的人都知道,很多分析程序除业务逻辑不同外,程序流程基本一样。在这种情况下,就需要Hive这样的用户编程接口。Hive提供了一套类SQL的查询语言,称为QL,而在创造Hive框架的过程中之所以使用SQL实现Hive是因为大家对SQL语言非常的熟悉,转换成本低,可以大大普及我们Hadoop用户使用的范围,类似作用的Pig就不是通过SQL实现的。 
Hive是基于Hadoop的一个开源数据仓库系统,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,Hive可以把SQL中的表、字段转换为HDFS中的目录、文件。 
②Hive是建立在Hadoop之上的数据仓库基础构架、是为了减少MapReduce编写工作的批处理系统,Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。Hive可以理解为一个客户端工具,将我们的sql操作转换为相应的MapReduce jobs,然后在Hadoop上面运行。 

Hive是由Facebook开源,构建于hadoop之上的数据仓库工具,将结构化的数据映射成一张表格,提供了类SQL查询语句,底层可以转化为Mapreduce去执行。

③Hive可以认为是MapReduce的一个封装、包装。Hive的意义就是在业务分析中将用户容易编写、会写的Sql语言转换为复杂难写的

MapReduce程序,从而大大降低了Hadoop学习的门槛,让更多的用户可以利用Hadoop进行数据挖掘分析。



Hive体系:

①用户接口:包括shell命令、Jdbc/Odbc和WebUi,其中最常用的是shell这个客户端方式对Hive进行相应操作 .
②Hive驱动Driver:(解析器、编译器、优化器、执行器)Hive解析器的核心功能就是根据用户编写的Sql语法匹配出相应的MapReduce模板,形

成对应的MapReduce job进行执行。 
③Hive元数据库(MetaStore):Hive将表中的元数据信息存储在数据库中,如derby(自带的)、mysql(实际工作中配置的),Hive中的元数据信息包括表的

名字、表的列和分区、表的属性(是否为外部表等)、表的数据所在的目录等。Hive中的解析器在运行的时候会读取元数据库MetaStore中的相关信息。 
在这里和大家说一下为什么我们在实际业务当中不用Hive自带的数据库derby,而要重新为其配置一个新的数据库Mysql,是因为derby这个数据库具有很大的局

限性:derby这个数据库不允许用户打开多个客户端对其进行共享操作,只能有一个客户端打开对其进行操作,即同一时刻只能有一个用户使用它,自然这在工作

当中是很不方便的,所以我们要重新为其配置一个数据库。 
④Hadoop:Hive用HDFS进行存储,用MapReduce进行计算——-Hive这个数据仓库的数据存储在HDFS中,业务实际分析计算是利用MapReduce执行的.

⑤Hive数据仓库于数据库的异同
(1).由于Hive采用了SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处。
(2)数据存储位置。  hdfs   raw local fs
(3)数据格式。 分隔符
(4)数据更新。hive读多写少。Hive中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。
INSERT INTO … VALUES添加数据,使用UPDATE … SET修改数据  不支持的
HDFS 一次写入多次读取
(5) 执行。hive通过MapReduce来实现的  而数据库通常有自己的执行引擎。 
(6)执行延迟。由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致Hive执行延迟高的因素是MapReduce框架
(7)可扩展性
(8)数据规模。

Hive的安装模式

嵌入模式


本地模式


远程模式


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值