机器学习之集成学习章节——《机器学习-周志华》

1. 谈谈集成学习的概念和思想。

(1)概念:集成学习是通过某种策略将若干个学习器(通过某种学习算法从数据中学得的模型)组合之后产生的一个新的学习器,通常个体学习器是由已有的学习算法从训练数据中学习产生的。
在这里插入图片描述
(2)思想:集成学习目的是结合具有“多样性”以及准确性高的个体学习器来获得比最好的单一学习器更好的性能,如何产生并结合“好而不同”的个体学习器是集成学习的核心思想。

2. 集成学习方法可以分为哪几类,并且分别阐述它们的特点。

根据个体学习器的生成方式,目前集成学习方法大致可分为两大类:第一类是个体学习器之间存在强依赖关系、必须串行生成的序列化方法,这种方法的代表是“Boosting”;第二类是个体学习器间不存在强依赖关系、可同时生成的并行化方法,它的代表是“Bagging”和“随机森林”。
(1)Boosting的算法原理可用下图概括:
在这里插入图片描述
从上图中可以看出,Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器2.,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。
(2)Bagging算法
在这里插入图片描述
从上图可以看出,Bagging的个体弱学习器的训练集是通过随机采样得到的。通过T次的随机采样,我们就可以得到T个采样集,对于这T个采样集,我们可以分别独立的训练出T个弱学习器,再对这T个弱学习器通过集合策略来得到最终的强学习器。
(3)随机森林
随机森林在以决策树为基学习器,构建Bagging的基础上,进一步在决策树的训练过程中引入了随机属性选择。传统的决策树在选择划分属性的时候是在当前节点的属性集合中选择一个最优属性,而在随机森林中,对基决策树的每个节点,先从该节点的属性集中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分。
这里的参数k控制了随机性的引入程度,若令 k = d(d指结点属性的个数),则基决策树的构建与传统决策树相同;若 k = 1,则随机选择一个属性进行划分;一般情况下采用 k = l o g 2 d k=log_{2}d k=log2d.

3. 在集成学习中,阐述针对二分类问题的AdaBoost算法实现过程。思考AdaBoost算法在每一轮如何改变训练数据的权值或概率分布?

(1)在这里插入图片描述实现过程:
1.初始化训练数据(每个样本)的权值分布:最初令每个样本的权重都相等.
2.基于分布 D t D_{t} Dt从数据集中训练出分类器 h t h_{t} ht.
3.估计 h t h_{t} ht的误差,若误差>0.5则重新下一轮训练.
4.确定分类器 h t h_{t} ht的权重.
5.更新样本分布.
6.若未达到预制的训练轮数,则继续进行训练.
(2)AdaBoost 方法在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率。每一个训练样本都被赋予一个权重,表明它被某个分类器选入训练集的概率。如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它被选中的概率就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。

4. 随机森林与集成学习之间有什么样的关系?

集成学习的目的是为了解决单个模型或者某一组参数的模型所固有的缺陷,从而整合起更多的模型,取长补短,避免局限性。随机森林就是集成学习思想下的产物,将许多棵决策树整合成森林,并合起来用来预测最终结果。

5. 用python实现基于单层决策树的AdaBoost算法。

# -*- coding: utf-8 -*-
"""
Created on Thu Jun 01 09:29:18 2017
Adaboost
@author: liujiping
"""
import numpy as np

def loadSimData():
    '''
    输入:无
    功能:提供一个两个特征的数据集
    输出:带有标签的数据集
    '''
    datMat = np.matrix([[1. ,2.1],[2. , 1.1],[1.3 ,1.],[1. ,1.],[2. ,1.]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
    return datMat, classLabels

def stumpClassify(dataMatrix,dimen,thresholdValue,thresholdIneq):
    '''
    输入:数据矩阵,特征维数,某一特征的分类阈值,分类不等号
    功能:输出决策树桩标签
    输出:标签
    '''
    returnArray =  np.ones((np.shape(dataMatrix)[0],1))
    if thresholdIneq == 'lt':
        returnArray[dataMatrix[:,dimen] <= thresholdValue] = -1
    else:
        returnArray[dataMatrix[:,dimen] > thresholdValue] = -1
    return returnArray

def buildStump(dataArray,classLabels,D):
    '''
    输入:数据矩阵,对应的真实类别标签,特征的权值分布
    功能:在数据集上,找到加权错误率(分类错误率)最小的单层决策树,显然,该指标函数与权重向量有密切关系
    输出:最佳树桩(特征,分类特征阈值,不等号方向),最小加权错误率,该权值向量D下的分类标签估计值
    '''
    dataMatrix = np.mat(dataArray); labelMat = np.mat(classLabels).T
    m,n = np.shape(dataMatrix)
    stepNum = 10.0; bestStump = {}; bestClassEst = np.mat(np.zeros((m,1)))
    minError = np.inf
    for i in range(n):
        rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max()
        stepSize = (rangeMax - rangeMin)/stepNum
        for j in range(-1, int(stepNum)+1):
            for thresholdIneq in ['lt', 'gt']:
                thresholdValue =  rangeMin + float(j) * stepSize
                predictClass = stumpClassify(dataMatrix,i,thresholdValue,thresholdIneq)
                errArray =  np.mat(np.ones((m,1)))
                errArray[predictClass == labelMat] = 0
                weightError = D.T * errArray
                #print "split: dim %d, thresh: %.2f,threIneq:%s,weghtError %.3F" %(i,thresholdValue,thresholdIneq,weightError)
                if weightError < minError:
                    minError = weightError
                    bestClassEst = predictClass.copy()
                    bestStump['dimen'] = i
                    bestStump['thresholdValue'] = thresholdValue
                    bestStump['thresholdIneq'] = thresholdIneq
    return bestClassEst, minError, bestStump

def adaBoostTrainDS(dataArray,classLabels,numIt=40):
    '''
    输入:数据集,标签向量,最大迭代次数
    功能:创建adaboost加法模型
    输出:多个弱分类器的数组
    '''
    weakClass = []#定义弱分类数组,保存每个基本分类器bestStump
    m,n = np.shape(dataArray)
    D = np.mat(np.ones((m,1))/m)
    aggClassEst = np.mat(np.zeros((m,1)))
    for i in range(numIt):
        print ("i:",i)
        bestClassEst, minError, bestStump = buildStump(dataArray,classLabels,D)#step1:找到最佳的单层决策树
        print ("D.T:", D.T)
        alpha = float(0.5*np.log((1-minError)/max(minError,1e-16)))#step2: 更新alpha
        print ("alpha:",alpha)
        bestStump['alpha'] = alpha
        weakClass.append(bestStump)#step3:将基本分类器添加到弱分类的数组中
        print ("classEst:",bestClassEst)
        expon = np.multiply(-1*alpha*np.mat(classLabels).T,bestClassEst)
        D = np.multiply(D, np.exp(expon))
        D = D/D.sum()#step4:更新权重,该式是让D服从概率分布
        aggClassEst += alpha*bestClassEst#steo5:更新累计类别估计值
        print ("aggClassEst:",aggClassEst.T)
        print (np.sign(aggClassEst) != np.mat(classLabels).T)
        aggError = np.multiply(np.sign(aggClassEst) != np.mat(classLabels).T,np.ones((m,1)))
        print ("aggError",aggError)
        aggErrorRate = aggError.sum()/m
        print ("total error:",aggErrorRate)
        if aggErrorRate == 0.0: break
    return weakClass

def adaTestClassify(dataToClassify,weakClass):
    dataMatrix = np.mat(dataToClassify)        
    m =np.shape(dataMatrix)[0]
    aggClassEst = np.mat(np.zeros((m,1)))
    for i in range(len(weakClass)):
        classEst = stumpClassify(dataToClassify,weakClass[i]['dimen'],weakClass[i]['thresholdValue']\
                                 ,weakClass[i]['thresholdIneq'])
        aggClassEst += weakClass[i]['alpha'] * classEst
        print (aggClassEst)
    return np.sign(aggClassEst)
if __name__  ==  '__main__':
    D =np.mat(np.ones((5,1))/5)
    dataMatrix ,classLabels= loadSimData()
    bestClassEst, minError, bestStump = buildStump(dataMatrix,classLabels,D)
    weakClass = adaBoostTrainDS(dataMatrix,classLabels,9)            
    testClass = adaTestClassify(np.mat([0,0]),weakClass)

程序参考:https://blog.csdn.net/LY_ysys629/article/details/72842067?tdsourcetag=s_pcqq_aiomsg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值