MOPSO算法思路和基本定义梳理

该算法的实现过程实际上就分为两个模块 1>初始化 2>更新,因为之前也没有用过PSO,直接上来就搞MOPSO的时候对于其中的一些定义和名词一知半解,对于理解整个算法的思路造成了困扰,下面就对于该算法的思路和一些名词定义做了梳理。

一.基础概念:

Parto最优解:一个决策向量是Pareto最优解,条件就是不存在另外一个决策向量支配它(目标向量的最优类似)

Parto最优解集:最优解组成的集合

Parto前沿、端面:所有的Pareto最优目标向量组成的曲面

存档: 即将非劣解存起来,非劣解就是无法严格对比出好坏,即有些目标好,有些目标差;存储pareto最优解,也可以说是pareto临时最优断.其实就是用来存储每一代个体的pareto最优解。

Pbest

### MOPSO 算法概述 MOPSO(Multi-Objective Particle Swarm Optimization)是一种基于粒子群优化的多目标优化算法[^1]。它通过模拟群体行为来寻找多个冲突目标下的最优解集,通常称为 Pareto 最优前沿。 以下是关于 MOPSO 的主要组成部分及其工作原理: #### 初始化阶段 在初始化过程中,随机生成一组粒子位置速度向量作为初始种群。这些粒子代表可能的解决方案空间中的候选点[^2]。 #### 更新机制 每一代迭代中,每个粒子会根据自身的最佳历史位置个人认知部分以及全局最优位置的社会共享信息调整其飞行方向与距离。对于多目标情况,则需引入外部存档策略存储非支配解集合用于指导后续搜索过程[^3]。 #### 外部档案管理 为了保存当前找到的所有Pareto前端上的优质个体,在标准PSO基础上增加了额外的数据结构——即所谓的'external archive'(外存档),用来记录那些被认定为非劣解的结果以便最终输出给决策者参考选用[^4]。 ```python def mopso_algorithm(): # Initialize particles and parameters. population_size = 50 max_iterations = 100 swarm = initialize_swarm(population_size) external_archive = [] for iteration in range(max_iterations): evaluate_particles(swarm) update_pbest(swarm) global_best = select_global_best(external_archive, swarm) update_velocity_position(swarm, global_best) nondominated_solutions = find_nondominated_solutions(swarm) maintain_external_archive(nondominated_solutions, external_archive) return external_archive ``` 以上伪代码展示了基本框架如何实现一个多目标粒子群优化器的核心逻辑循环步骤[^5]。 ### 流程图描述 虽然无法直接提供图形化表示形式,但是可以文字叙述如下: 1. **Start**: 开始程序运行。 2. **Initialize Parameters & Population**: 设置参数并创建初始种群。 3. **Evaluate Fitness Values**: 计算适应度函数值。 4. **Update Personal Best (pBest)**: 如果当前位置优于个人最好位置则更新之。 5. **Select Global Best from Archive or Current Generation's Non-dominated Set**: 根据某种方式挑选引导整个族群移动的目标样本。 6. **Adjust Velocity And Position According To Equations Given In Literature Review Section Above** : 调整速度位移遵循前面提到过的方程式规则。 7. **Check For Dominance Among New Solutions Found During This Iteration Step Against Those Already Stored Inside The External Memory Structure Called 'Archive'. If Any Are Nondominating Add Them Into It While Removing Others That Get Outclassed By These Newly Discovered Ones.** 8. **Repeat Until Termination Criteria Met Such As Maximum Number Of Generations Reached Etc... Then Proceed Towards End Block Where Results Contained Within Final State Of External Repository Will Be Displayed Or Further Processed Depending Upon Application Requirements Specified Earlier On Before Execution Began Initially At All!** 请注意实际绘制时应采用合适的绘图工具软件完成具体形象化的表达效果更佳!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值