该算法的实现过程实际上就分为两个模块 1>初始化 2>更新,因为之前也没有用过PSO,直接上来就搞MOPSO的时候对于其中的一些定义和名词一知半解,对于理解整个算法的思路造成了困扰,下面就对于该算法的思路和一些名词定义做了梳理。
一.基础概念:
Parto最优解:一个决策向量是Pareto最优解,条件就是不存在另外一个决策向量支配它(目标向量的最优类似)
Parto最优解集:最优解组成的集合
Parto前沿、端面:所有的Pareto最优目标向量组成的曲面
存档: 即将非劣解存起来,非劣解就是无法严格对比出好坏,即有些目标好,有些目标差;存储pareto最优解集,也可以说是pareto临时最优断.其实就是用来存储每一代个体的pareto最优解。
Pbest