暴力法
从1-target/2开始暴力枚举,简单易懂
class Solution {
public int[][] findContinuousSequence(int target) {
List<int[]> list = new ArrayList<>();
for(int i=1;i<=target/2;i++){
for(int j=i+1;j<=target/2+1;j++){
if(sum(i,j)<target)continue;
else if(sum(i,j)>target)break;
else if(sum(i,j)==target){
int[] temp = new int[j-i+1];
for(int index=0;index<temp.length;index++)temp[index] = i+index;
list.add(temp);
break;
}
}
}
int[][] res = new int[list.size()][];
for(int i=0;i<res.length;i++){
res[i] = list.get(i);
}
return res;
}
public int sum(int i,int j){
return (j-i+1)*(i+j)/2;
}
}
基于通项公式的优化,求根法
可以发现答案是公差为1的等差数列,可以得到公式target=(2*a+n-1)*n/2,其中a是首项,n是项数
一开始没有搞清楚,直接用得到的和和target比较,最后还是和暴力枚举一样。
看了题解后,发现可以枚举a,把n当成未知数,得到一元二次方程,根据求根公式直接求解。
双指针法
用两个单调递增的指针分别指向区间的左右,
当sum<target时,r++;
当sum>target时,l++;
当sum==target时,r++,l++;
class Solution {
public int[][] findContinuousSequence(int target) {
List<int[]> list = new ArrayList<>();
int l=1,r=2;
while(l<r){
int sum = (r-l+1)*(r+l)/2;
if(sum==target){
int[] temp = new int[r-l+1];
for(int index=0;index<temp.length;index++)temp[index] = l+index;
list.add(temp);
l++;
r++;
}
else if(sum<target)r++;
else l++;
}
int[][] res = new int[list.size()][];
for(int i=0;i<res.length;i++){
res[i] = list.get(i);
}
return res;
}
基于通项公式的究极优化
从通项公式可以得到an+n(n-1)/2=target,进而得到a=(t-n*(n-1)/2)/n,遍历n,求能整除的a
想不到这种方法,得到通项公式后应该仔细观察
大神的代码:
class Solution {
public int[][] findContinuousSequence(int target) {
List<int[]> result = new ArrayList<>();
int i = 1;
while(target>0)
{
target -= i++; //n*(n-1)/2即为前n项和,故减去i
if(target>0 && target%i == 0)
{
int[] array = new int[i];
for(int k = target/i, j = 0; k < target/i+i; k++,j++)
{
array[j] = k;
}
result.add(array);
}
}
Collections.reverse(result);
return result.toArray(new int[0][]);
}
}
作者:VaporMax
链接:https://leetcode-cn.com/problems/he-wei-sde-lian-xu-zheng-shu-xu-lie-lcof/solution/java-shuang-100-by-vapormax/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。