Radar

Radar

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

 

输入
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

The input is terminated by a line containing pair of zeros
输出
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
样例输入
3 2
1 2
-3 1
2 1

1 2
0 2

0 0
样例输出
Case 1: 2
Case 2: 1
 
   
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
struct rd
{
	double x;
	double y;
}g[1010];
struct range
{
	double a;
	double b;
}c[1010];
bool cmp(range p,range q)
{
	return p.a<q.a;
}
int main()
{
	int n,i,d;
	int Case = 0;
	double sum,m;
	while(~scanf("%d%d",&n,&d))
	{
		if(n==0&&d==0)
		break;
		int  sum=1;
		for(i=0;i<n;i++)
		{
		scanf("%lf%lf",&g[i].x,&g[i].y);
		c[i].a=g[i].x-sqrt(d*d-(g[i].y*g[i].y));
		c[i].b=g[i].x+sqrt(d*d-(g[i].y*g[i].y));
		if(g[i].y<0||d<=0||g[i].y>d) sum = -1;
		}
		sort(c,c+n,cmp);
		double m=c[0].b;
		for(i=1;i<n&&sum!=-1;i++)
		{
			if(c[i].a>m)
			{
				sum++;
				m=c[i].b;
			}
			else if(c[i].b<m)
			m=c[i].b;
		}
		printf("Case %d: %d\n",++Case,sum);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值