描述
给定两个数m,n,其中m是一个素数。
将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m。
-
输入
-
第一行是一个整数s(0<s<=100),表示测试数据的组数
随后的s行, 每行有两个整数n,m。
输出
- 输出m的个数。 样例输入
-
2 100 5 16 2
样例输出
-
24 15
#include<stdio.h>
int main()
{
int s,n,m,sum;
scanf("%d",&s);
while(s--)
{
sum=0;
scanf("%d%d",&n,&m);
while(n!=0)
{
n=n/m;
sum=sum+n;
}
printf("%d\n",sum);
}
return 0;
}
刚看到这道题确实有点懵逼,还是用最直接的求阶乘,然后一个数一个数的判断,当了解到这种算法时比较好奇,怎么会这么简单,且一时理解不了,在网上搜解释,解释也是特别抽象,终于最后领悟了,比较开心,所以把自己的理解具体的写下来。
这个程序最精要的也就是 n=n/m; sum=sum+n;这两句,我的理解如下:
例如100和5
n的阶乘:1*2*3*4*5*6*.......*100 里面有多少需要5呢? 5肯定需要,10也需要,类似的15.20.25....100;都是由5构成,那么他们的因式肯定都有5,那么这样的数有多少呢?那就是 n=n/m;100/5=20;而这20个数里还是有特别的数,比如25,50,他们是由5*5,5*5*2构成,当然还有75,100,他们都有俩个5,所以还需要加一遍他们的个数,这是100和5,如果是其他的数,可能循环还会继续下去。