高考难度组合数学典型题选讲

本文探讨了高考中的组合数学问题,通过五个典型题目讲解如何应用组合数学知识解题。涉及内容包括配对概率计算、志愿者分配、点分配、外衣分配和车辆分配等实际场景,解析了各种方法,如分类讨论、排列组合运用等策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置知识

  • n n n个种选 m m m个方案数 = C n m =C_n^m =Cnm
  • n n n个与另 n n n个任意配对方案数 = n ! =n! =n!

基本原则

  • 熟悉基本模型,触类旁通
  • 理清逻辑,会分类讨论,不重不漏

个人习惯

  • 整体列式组合算,部分可直接列举手算
  • 不使用排列数 A A A,列式仅含组合数 C C C和阶乘 n ! n! n!

T1

  • 题目描述 3 3 3双鞋中任取 2 2 2只,恰好配对概率。
  • 法1 即总的符合条件情况除以总的可能情况。符合条件的有 3 3 3种(三双鞋任意一双)情况,总的有 C 6 2 = 15 C_6^2=15 C62=15种,故答案 3 15 = 1 5 \frac{3}{15}=\frac{1}{5} 153=51
  • 法2 一只一只取。先取一只,取到哪只都行,因为每只是等价的;再取一只,则这第二只必须与第一只配对,剩下 5 5 5只中只有一只可以配对。注意这里第一只不管取到了哪只,第二只都是 1 5 \frac{1}{5} 51的概率配对,即第一只取的六种情况都是可以的,且这六种情况实质上是没有区别的。所以第一步概率为 1 1 1,第二步的概率为 1 5 \frac{1}{5} 51,所以答案 1 ∗ 1 5 = 1 5 1*\frac{1}{5}=\frac{1}{5} 151=51

T2

  • 题目描述 3 3 3个路口,每个路口需要 2 2 2人。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值