1、一个线性规划的例子
import tensorflow as tf
import numpy as np
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
####创建tensorflow结构
W=tf.Variable(tf.random_uniform([1],-1.0,1.0))
b=tf.Variable(tf.zeros([1]))
y=W*x_data+b
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5) #参数是学习率
train=optimizer.minimize(loss)
init=tf.initialize_all_variables()#初始化变量
####tensorflow结构
sess=tf.Session()
sess.run(init) #激活神经网络
for step in range(201):
sess.run(train)
if step%20==0:
print(step,sess.run(W),sess.run(b))
2、session会话控制
import tensorflow as tf
import numpy as np
matrix1=tf.constant([[3,3],
[2,3]])
matrix2=tf.constant([[2],
[2]])
product=tf.matmul(matrix1,matrix2)
#method 1
sess=tf.Session()
result=sess.run(product)
print(result)
sess.close() #关闭session
#method 2
with tf.Session() as sess: #用完之后不用关闭session
result2=sess.run(product)
print(result2)
3、variable变量
import tensorflow as tf
import numpy as np
state=tf.Variable(0)
one=tf.constant(1)
tmp=tf.add(state,one)
update=tf.assign(state,tmp)#state<-tmp
init=tf.global_variables_initializer() #初始化,定义了tf变量都要初始化
with tf.Session()as sess:
sess.run(init)
for _ in range(3):
sess.run(update)
result=sess.run(state)
print(result)
4、placeholder传入值
input1=tf.placeholder(tf.float32)#参数是type即tf处理的数据形式 第二个参数可以是结构比如【2,2】
input2=tf.placeholder(tf.float32)
output=tf.multiply(input1,input2)
with tf.Session()as sess:
print(sess.run(output,feed_dict={input1:[2],input2:[1]}))
5、def add_layer()添加层
def add_layer(inputs,in_size,out_size,activation_function=None):
W=tf.Variable(tf.random_normal([in_size,out_size]))
b=tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b=tf.matmul(inputs,W)+b
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
6、建造神经网络
######数据准备
x_data=np.linspace(-1,1,300)[:,np.newaxis]#把1*300转化为300*1
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise #y=x^2-0.5
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])
######神经网络结构
hl=add_layer(xs,1,10,activation_function=tf.nn.relu) #隐藏层 1->10
prediction=add_layer(hl,10,1,activation_function=None)#输出层 10->1
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
######开始学习
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()#show之后不暂停
plt.show()
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50:
#print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value=sess.run(prediction,feed_dict={xs:x_data,ys:y_data})
lines=ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(0.1)
7、tensorflow可视化
with tf.name_scope('loss'):
writer=tf.summary.FileWriter("logs/",sess.graph)
def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):
layer_name='layer%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope('W'):
W=tf.Variable(tf.random_normal([in_size,out_size]),name='W')
tf.summary.histogram(layer_name+'/W',W)
with tf.name_scope('loss'):
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
reduction_indices=[1]))
tf.summary.scalar('loss',loss)
sess=tf.Session()
merged=tf.summary.merge_all()
writer=tf.summary.FileWriter("logs/",sess.graph)
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
result=sess.run(merged,feed_dict={xs:x_data,ys:y_data})
writer.add_summary(result,i)
8、tensorflow分类
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
######计算准确度
def compute_accuracy(v_xs,v_ys):
global prediction
y_pre=sess.run(prediction,feed_dict={xs:v_xs})
correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
return result
######数据准备
xs=tf.placeholder(tf.float32,[None,784])#28*28
ys=tf.placeholder(tf.float32,[None,10])
######神经网络结构
prediction=add_layer(xs,784,10,activation_function=tf.nn.softmax)#softmax做分类用
cross_entropy=tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
reduction_indices=[1]))#交叉熵损失函数
train_step=tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#########开始训练
for i in range(1000):
batch_xs,batch_ys=mnist.train.next_batch(100)#每一步训练100个图片
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50==0:#计算准确度
print(compute_accuracy(
mnist.test.images,mnist.test.labels))
9、CNN
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#######load data
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
######计算准确度
def compute_accuracy(v_xs,v_ys):
global prediction
y_pre=sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
return result
def w_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
def b_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)
def conv2d(x,W):
#strides[1,x_movement,y_movement,1]
#must have strides[0]=strides[3]=1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
######数据准备
keep_prob=tf.placeholder(tf.float32)
xs=tf.placeholder(tf.float32,[None,784])
ys=tf.placeholder(tf.float32,[None,10])
x_image=tf.reshape(xs,[-1,28,28,1])
print(x_image.shape)#[n_samples,28,28,1]
#############神经网络结构##########
####卷积层1
W_conv1=w_variable([5,5,1,32])#patch 5*5 insize 1输入的厚度 outsize:32
b_conv1=b_variable([32])
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#outputsize:28*28*32
h_pool1=max_pool_2x2(h_conv1)#outputsize:14*14*32
####卷积层2
W_conv2=w_variable([5,5,32,64])#patch 5*5 insize 32输入的厚度 outsize:64
b_conv2=b_variable([64])
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#outputsize:14*14*64
h_pool2=max_pool_2x2(h_conv2)#outputsize:7*7*64
#####func1 layer
w_fc1=w_variable([7*7*64,1024])
b_fc1=b_variable([1024])
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])#[n_samples,7,7,64]->[n_samples,7*7*64]
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
#####func2 layer
w_fc2=w_variable([1024,10])
b_fc2=b_variable([10])
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2)
##############神经网络结构##########
cross_entropy=tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
reduction_indices=[1]))#交叉熵损失函数
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
#########开始训练
for i in range(1000):
batch_xs,batch_ys=mnist.train.next_batch(70)#每一步训练100个图片
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})
if i%50==0:#计算准确度
print(compute_accuracy(
mnist.test.images,mnist.test.labels))
10、saver读取
写入
W=tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32,name='weight')
b=tf.Variable([[1,2,3]],dtype=tf.float32,name='biases')
init=tf.global_variables_initializer()
saver=tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
save_path=saver.save(sess,"my_net/save_net.ckpt")
读取 要定义同样大小和同样的类型
W=tf.Variable(np.arange(6).reshape((2,3)),dtype=tf.float32,name='weight')
b=tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32,name='biases')
saver=tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess,"my_net/save_net.ckpt")
print("weight:",sess.run(W))
print("biases:",sess.run(b))
11、RNN
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#######load data
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
#hyperparameters
lr=0.001
training_iters=100000
batch_size=128
n_inputs=28 #mnist data input(image shape:28*28)
n_steps=28 #time steps
n_hidden_units=128 #neurons in hidden layer
n_classes=10 #mnist classed(0-9digits)
#tf graph input
x=tf.placeholder(tf.float32,[None,n_steps,n_inputs])
y=tf.placeholder(tf.float32,[None,n_classes])
#difine weights
weights={
#(28,128)
'in':tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
#(128,10)
'out':tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
}
biases={
#(128,)
'in':tf.Variable(tf.constant(0.1,shape=[n_hidden_units,])),
#(10,)
'out':tf.Variable(tf.constant(0.1,shape=[n_classes,]))
}
def RNN(X,weights,biases):
##hidden layer for input
X=tf.reshape(X,[-1,n_inputs])#X(128,28,28)->(128*28,28)
X_in=tf.matmul(X,weights['in'])+biases['in'] #(128*28,128)
X_in=tf.reshape(X_in,[-1,n_steps,n_hidden_units])#(128*28,128)->(128,28,128)
##cell
lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units,forget_bias=1.0,state_is_tuple=True)
_init_state=lstm_cell.zero_state(batch_size,dtype=tf.float32) #(c_state,m_state)
outputs,states=tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=_init_state,time_major=False)
##hidden layer for output
results=tf.matmul(states[1],weights['out'])+biases['out']
return results
pred=RNN(x,weights,biases)
cost=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
train_op=tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
step=0
while step*batch_size<training_iters:
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
batch_xs=batch_xs.reshape([batch_size,n_steps,n_inputs])
sess.run([train_op],feed_dict={
x:batch_xs,
y:batch_ys,
})
if step%20==0:
print(sess.run(accuracy,feed_dict={
x:batch_xs,
y:batch_ys,
}))
step+=1