大数据离线阶段Day4之Flume实战案例

1. 日志的采集和汇总1.1. 案例场景

A、B两台日志服务机器实时生产日志主要类型为access.log、nginx.log、web.log

现在要求:

把A、B 机器中的access.log、nginx.log、web.log 采集汇总到C机器上然后统一收集到hdfs中。

但是在hdfs中要求的目录为:

/source/logs/access/20160101/**

/source/logs/nginx/20160101/**

/source/logs/web/20160101/**

1.2. 场景分析
1.3. 数据流程处理分析

1.4. 功能实现

① 在服务器A和服务器B上

创建配置文件        exec_source_avro_sink.conf

# Name the components on this agent

a1.sources = r1 r2 r3

a1.sinks = k1

a1.channels = c1

# Describe/configure the source

a1.sources.r1.type = exec

a1.sources.r1.command = tail -F /root/data/access.log

a1.sources.r1.interceptors = i1

a1.sources.r1.interceptors.i1.type = static

##  static拦截器的功能就是往采集到的数据的header中插入自##         己定义的key-value对

a1.sources.r1.interceptors.i1.key = type

a1.sources.r1.interceptors.i1.value = access

a1.sources.r2.type = exec

a1.sources.r2.command = tail -F /root/data/nginx.log

a1.sources.r2.interceptors = i2

a1.sources.r2.interceptors.i2.type = static

a1.sources.r2.interceptors.i2.key = type

a1.sources.r2.interceptors.i2.value = nginx

a1.sources.r3.type = exec

a1.sources.r3.command = tail -F /root/data/web.log

a1.sources.r3.interceptors = i3

a1.sources.r3.interceptors.i3.type = static

a1.sources.r3.interceptors.i3.key = type

a1.sources.r3.interceptors.i3.value = web

# Describe the sink

a1.sinks.k1.type = avro

a1.sinks.k1.hostname = 192.168.200.101

a1.sinks.k1.port = 41414

# Use a channel which buffers events in memory

a1.channels.c1.type = memory

a1.channels.c1.capacity = 20000

a1.channels.c1.transactionCapacity = 10000

# Bind the source and sink to the channel

a1.sources.r1.channels = c1

a1.sources.r2.channels = c1

a1.sources.r3.channels = c1

a1.sinks.k1.channel = c1

② 在服务器C上创建配置文件        avro_source_hdfs_sink.conf  文件内容为

#定义agent名, source、channel、sink的名称

a1.sources = r1

a1.sinks = k1

a1.channels = c1

#定义source

a1.sources.r1.type = avro

a1.sources.r1.bind = mini2

a1.sources.r1.port =41414

#添加时间拦截器

a1.sources.r1.interceptors = i1

a1.sources.r1.interceptors.i1.type =

org.apache.flume.interceptor.TimestampInterceptor$Builder

#定义channels

a1.channels.c1.type = memory

a1.channels.c1.capacity = 20000

a1.channels.c1.transactionCapacity = 10000

#定义sink

a1.sinks.k1.type = hdfs

a1.sinks.k1.hdfs.path=hdfs://192.168.200.101:9000/source/logs/%{type}/%Y%m%d

a1.sinks.k1.hdfs.filePrefix =events

a1.sinks.k1.hdfs.fileType = DataStream

a1.sinks.k1.hdfs.writeFormat = Text

#时间类型

a1.sinks.k1.hdfs.useLocalTimeStamp = true

#生成的文件不按条数生成

a1.sinks.k1.hdfs.rollCount = 0

#生成的文件按时间生成

a1.sinks.k1.hdfs.rollInterval = 30

#生成的文件按大小生成

a1.sinks.k1.hdfs.rollSize  = 10485760

#批量写入hdfs的个数

a1.sinks.k1.hdfs.batchSize = 10000

flume操作hdfs的线程数(包括新建,写入等)

a1.sinks.k1.hdfs.threadsPoolSize=10

#操作hdfs超时时间

a1.sinks.k1.hdfs.callTimeout=30000

#组装source、channel、sink

a1.sources.r1.channels = c1

a1.sinks.k1.channel = c1

③ 配置完成之后,在服务器A和B上的/root/data有数据文件access.log、nginx.log、web.log。先启动服务器C上的flume,启动命令

在flume安装目录下执行 :

bin/flume-ng agent -c conf -f conf/avro_source_hdfs_sink.conf -name a1 -Dflume.root.logger=DEBUG,console        

然后在启动服务器上的A和B,启动命令

在flume安装目录下执行 :

bin/flume-ng agent -c conf -f conf/exec_source_avro_sink.conf -name a1 -Dflume.root.logger=DEBUG,console        

 

2. Flume自定义拦截器(了解)
2.1. 案例背景介绍

Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。Flume有各种自带的拦截器,比如:TimestampInterceptorHostInterceptorRegexExtractorInterceptor等,通过使用不同的拦截器,实现不同的功能。但是以上的这些拦截器,不能改变原有日志数据的内容或者对日志信息添加一定的处理逻辑,当一条日志信息有几十个甚至上百个字段的时候,在传统的Flume处理下,收集到的日志还是会有对应这么多的字段,也不能对你想要的字段进行对应的处理。

2.2. 自定义拦截器

根据实际业务的需求,为了更好的满足数据在应用层的处理,通过自定义Flume拦截器,过滤掉不需要的字段,并对指定字段加密处理,将源数据进行预处理。减少了数据的传输量,降低了存储的开销。

2.3. 功能实现

本技术方案核心包括二部分:

编写java代码,自定义拦截器

内容包括:

1. 定义一个类CustomParameterInterceptor实现Interceptor接口。

2.  在CustomParameterInterceptor类中定义变量,这些变量是需要到 Flume的配置文件中进行配置使用的。每一行字段间的分隔符(fields_separator)、通过分隔符分隔后,所需要列字段的下标(indexs)、多个下标使用的分隔符(indexs_separator)、多个下标使用的分隔符(indexs_separator)。

3. 添加CustomParameterInterceptor的有参构造方法。并对相应的变量进行处理。将配置文件中传过来的unicode编码进行转换为字符串。

4. 写具体的要处理的逻辑intercept()方法,一个是单个处理的,一个是批量处理。

5. 接口中定义了一个内部接口Builder,在configure方法中,进行一些参数配置。并给出,在flume的conf中没配置一些参数时,给出其默认值。通过其builder方法,返回一个CustomParameterInterceptor对象。

6. 定义一个静态类,类中封装MD5加密方法

7.  通过以上步骤,自定义拦截器的代码开发已完成,然后打包成jar, 放到Flume的根目录下的lib中

修改Flume的配置信息

新增配置文件spool-interceptor-hdfs.conf,内容为:

a1.channels = c1

a1.sources = r1

a1.sinks = s1

#channel

a1.channels.c1.type = memory

a1.channels.c1.capacity=100000

a1.channels.c1.transactionCapacity=50000

#source

a1.sources.r1.channels = c1

a1.sources.r1.type = spooldir

a1.sources.r1.spoolDir = /root/data/

a1.sources.r1.batchSize= 50

a1.sources.r1.inputCharset = UTF-8

a1.sources.r1.interceptors =i1 i2

a1.sources.r1.interceptors.i1.type =cn.itcast.interceptor.CustomParameterInterceptor$Builder

a1.sources.r1.interceptors.i1.fields_separator=\\u0009

a1.sources.r1.interceptors.i1.indexs =0,1,3,5,6

a1.sources.r1.interceptors.i1.indexs_separator =\\u002c

a1.sources.r1.interceptors.i1.encrypted_field_index =0

a1.sources.r1.interceptors.i2.type = org.apache.flume.interceptor.TimestampInterceptor$Builder

#sink

a1.sinks.s1.channel = c1

a1.sinks.s1.type = hdfs

a1.sinks.s1.hdfs.path =hdfs://192.168.200.101:9000/flume/%Y%m%d

a1.sinks.s1.hdfs.filePrefix = event

a1.sinks.s1.hdfs.fileSuffix = .log

a1.sinks.s1.hdfs.rollSize = 10485760

a1.sinks.s1.hdfs.rollInterval =20

a1.sinks.s1.hdfs.rollCount = 0

a1.sinks.s1.hdfs.batchSize = 1500

a1.sinks.s1.hdfs.round = true

a1.sinks.s1.hdfs.roundUnit = minute

a1.sinks.s1.hdfs.threadsPoolSize = 25

a1.sinks.s1.hdfs.useLocalTimeStamp = true

a1.sinks.s1.hdfs.minBlockReplicas = 1

a1.sinks.s1.hdfs.fileType =DataStream

a1.sinks.s1.hdfs.writeFormat = Text

a1.sinks.s1.hdfs.callTimeout = 60000

a1.sinks.s1.hdfs.idleTimeout =60

启动:

bin/flume-ng agent -c conf -f conf/spool-interceptor-hdfs.conf -name a1 -Dflume.root.logger=DEBUG,console        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值