51nod1782 圣诞树

题目

在这里插入图片描述
题目链接

解题思路

对整棵树进行轻重链剖分,将一棵树剖分成若干链。
按照树的剖分,我们可以将礼物划分到至多 l o g 2 n log_2n log2n个链上。
对于一条链而言,我们使用平衡树来维护礼物,从而做到插入删除和查询前k大异或和。
这里平衡树使用fhq-treap,这是一种无旋平衡树,平衡策略与treap相同。通过分离和合并操作构建出treap旋转后相同的平衡树。
fhq-treap代码量小,常数小,又因其无旋,也支持可持久化。是一种强大的平衡树。
整体复杂度 O ( n l o g 2 n l o g 2 n ) O(nlog_2nlog_2n) O(nlog2nlog2n)

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <ctime>
#include <random>
using namespace std;

#define MP make_pair

typedef long long ll;

void read(int &x) {
	x = 0; char c = getchar();
	while (c < '0' || c > '9') c = getchar();
	while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
}

void write(int x) {
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}

const int N = 1e5 + 100;

struct node {
	ll cnt; int id;
	node() {}
	node(ll cnt, int id) :cnt(cnt), id(id) {}
};

bool operator <= (node a, node b) {
	if (a.cnt == b.cnt) return a.id <= b.id;
	return a.cnt < b.cnt;
}

mt19937 ran(time(0));

namespace fhqtreap {
	int ch[N * 2][2], pri[N * 2], siz[N * 2], sum[N * 2], sz;
	node val[N * 2];
	
	void update(int x) {
		siz[x] = 1 + siz[ch[x][0]] + siz[ch[x][1]];
		sum[x] = val[x].id ^ sum[ch[x][0]] ^ sum[ch[x][1]];
	}

	int newnode(node x) {
		siz[++sz] = 1; val[sz] = x; sum[sz] = x.id; pri[sz] = ran();
		return sz;
	}

	int merge(int x, int y) {
		if (!x || !y) return x + y;
		if (pri[x] < pri[y]) {
			ch[x][1] = merge(ch[x][1], y);
			update(x); return x;
		}
		else {
			ch[y][0] = merge(x, ch[y][0]);
			update(y); return y;
		}
	}

	void split(int now, node k, int &x, int &y) {
		if (!now) x = y = 0;
		else {
			if (val[now] <= k) x = now, split(ch[now][1], k, ch[now][1], y);
			else y = now, split(ch[now][0], k, x, ch[now][0]);
			update(now);
		}
	}

	int query(int now, int k) {
		int res = 0;
		while (1) {
			if (k <= siz[ch[now][0]]) now = ch[now][0];
			else if (k == siz[ch[now][0]] + 1) return res ^ val[now].id ^ sum[ch[now][0]];
			else k -= siz[ch[now][0]] + 1, res ^= val[now].id ^ sum[ch[now][0]], now = ch[now][1];
		}
	}

	void clr() {
		while (sz) ch[sz][0] = ch[sz][1] = 0, sz--;
	}
}

using fhqtreap::newnode;
using fhqtreap::merge;
using fhqtreap::split;
using fhqtreap::clr;

int siz[N], faz[N], dep[N], son[N], top[N];
vector<int> V[N];

void dfs1(int u, int fa) {
	siz[u] = 1;
	faz[u] = fa;
	dep[u] = dep[fa] + 1;
	for (int v : V[u]) {
		if (v == fa) continue;
		dfs1(v, u);
		siz[u] += siz[v];
		if (siz[son[u]] < siz[v]) son[u] = v;
	}
}

void dfs2(int u, int t) {
	top[u] = t;
	if (son[u]) dfs2(son[u], t);
	for (int v : V[u])
		if (v != faz[u] && v != son[u])
			dfs2(v, v);
}

vector<node> Inc[N], Dec[N];

void insert(int x, int y, node qu) {
	while (top[x] != top[y]) {
		if (dep[top[x]] > dep[top[y]]) swap(x, y);
		Inc[y].push_back(qu);
		Dec[top[y]].push_back(node(qu.cnt, qu.id));
		y = faz[top[y]];
	}
	if (dep[x] > dep[y]) swap(x, y);
	Inc[y].push_back(qu); Dec[x].push_back(qu);
}

int n, q;
int ans[N];
ll cnt[N];
vector<pair<int, int> > Q[N];

int solve(int u) {
	int r = 0;
	if (son[u]) r = solve(son[u]);
	for (node q : Inc[u]) {
		int x = 0, y = 0, z = 0;
		if (cnt[q.id] == 0) y = newnode(q);
		else {
			split(r, node(cnt[q.id], q.id - 1), x, y);
			split(y, node(cnt[q.id], q.id), y, z);
			r = merge(x, z);
			fhqtreap::val[y].cnt += q.cnt;	
		}
		cnt[q.id] += q.cnt;
		split(r, node(cnt[q.id], q.id), x, z);
		r = merge(merge(x, y), z);
	}
	for (pair<int, int> q : Q[u]) {
		if (q.first >= fhqtreap::siz[r]) ans[q.second] = fhqtreap::sum[r];
		else ans[q.second] = fhqtreap::query(r, q.first);
	}
	for (node q : Dec[u]) {
		int x = 0, y = 0, z = 0;
		split(r, node(cnt[q.id], q.id - 1), x, y);
		split(y, node(cnt[q.id], q.id), y, z);
		r = merge(x, z);
		cnt[q.id] -= q.cnt;
		if (cnt[q.id] != 0) {
			fhqtreap::val[y].cnt -= q.cnt;
			split(r, node(cnt[q.id], q.id), x, z);
			r = merge(merge(x, y), z);
		}
	}
	return r;
}

void dfs(int u) {
	if (u == top[u]) solve(u), clr();
	for (int v : V[u]) if (v != faz[u]) dfs(v);
}

int main() {
	//freopen("0.txt", "r", stdin);
	int a, b, c, d;
	read(n);
	for (int i = 1; i < n; i++) {
		read(a); read(b);
		V[a].push_back(b);
		V[b].push_back(a);
	}
	dfs1(1, 0);
	dfs2(1, 1);
	read(q);
	while (q--) {
		read(a); read(b); read(c); read(d);
		insert(a, b, node(c, d));
	}
	read(q);
	for (int i = 1; i <= q; i++) {
		read(a); read(b);
		Q[a].push_back(MP(b, i));
	}
	a = 0;
	dfs(1);
	for (int i = 1; i <= q; i++) write(ans[i]), puts("");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值