Leetcode-3-Longest Substring Without Repeating Characters

这道题我不会做,看了一下午,没看懂!!!

题目

3. Longest Substring Without Repeating Characters

Given a string s, find the length of the longest substring without repeating characters.

Example 1:

Input: s = "abcabcbb"
Output: 3
Explanation: The answer is "abc", with the length of 3.

Example 2:

Input: s = "bbbbb"
Output: 1
Explanation: The answer is "b", with the length of 1.

Example 3:

Input: s = "pwwkew"
Output: 3
Explanation: The answer is "wke", with the length of 3.
Notice that the answer must be a substring, "pwke" is a subsequence and not a substring.

Constraints:

  • 0 <= s.length <= 5 * 104
  • s consists of English letters, digits, symbols and spaces.

方法一

思路和算法

我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串abcabcbb为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长得字符串:

  • 以 (a)bcabcbb 开始的最长字符串为 (abc)abcbb;
  • 以a(b)cabcbb 开始的最长字符串为 a(bca)bcbb;
  • 以 ab©abcbb 开始的最长字符串为 ab(cab)cbb;
  • 以 abc(a)bcbb 开始的最长字符串为abc(abc)bb;
  • 以 abca(b)cbb 开始的最长字符串为abca(bc)bb;
  • 以 abcab©bb 开始的最长字符串为 abcab(cb)b;
  • 以 abcabc(b)b 开始的最长字符串为 abcabc(b)b;
  • 以 abcabcb(b) 开始的最长字符串为 abcabcb(b)。

如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第k个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为rk。那么当我们选择第k+1哥字符作为起始位置时,首先从k+1到rk的字符显然是不重复的,并且由于少了原本的第k个字符,我们可以尝试继续增大rk,直到右侧出现了重复字符为止。

这样一来,我们就可以使用【滑动窗口】来解决这个问题了:

  • 我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中【枚举子串的起始位置】,而右指针即为上文中的rk;
  • 在每一步的操作中,我们会将左指针向右移动一格,表示我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度。
  • 在枚举结束后,我们找到的最长得子串的长度即为答案。

判断重复字符

在上面的流程中,我们还需要使用一种数据结构来判断【是否有重复的字符】,常用的数据结构为哈希集合(即C++中的std::unordered_set,Java中的HashSet,Python中的set,JavaScript中的Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。

题解

class Solution {
    public int lengthOfLongestSubstring(String s) {
        // 哈希集合,记录每个字符是否出现过
        Set<Character> occ = new HashSet<Character>();
        int n = s.length();

        // 右指针,初始值为-1,相当于我们在字符串的左边界的左侧,还没有开始移动
        int rk = -1, ans = 0;
        for (int i = 0; i < n; ++i) {

            if (i != 0) {
                // 左指针向右移动一格,移除一个字符
                char c = s.charAt(i - 1);
                System.out.println("c ---> " + c);
                occ.remove(s.charAt(i - 1));
            }

            while (rk + 1 < n && !occ.contains(s.charAt(rk + 1))) {
                char c = s.charAt(rk + 1);

                System.out.println("rk --->" + c);

                // 不断地移动右指针
                occ.add(s.charAt(rk + 1));
                ++rk;
            }

            ans = Math.max(ans, rk - i + 1);
        }
        return ans;
    }
}

转载

作者:LeetCode-Solution
链接:https://leetcode.cn/problems/longest-substring-without-repeating-characters/solution/wu-zhong-fu-zi-fu-de-zui-chang-zi-chuan-by-leetc-2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值