codeforces 1561D Up the Strip

D. Up the Strip

题意: 目前是x,有两种操作:1. x → x − y x \rightarrow x - y xxy。 2. x → ⌊ x z ⌋ x \rightarrow \lfloor \frac{x}{z} \rfloor xzx。问从n到1的方案数。

根据定义得: f ( x ) = ∑ y = 1 x − 1 f ( x − y ) + ∑ z − 2 x f ( ⌊ x z ⌋ ) f(x) = \sum_{y =1}^{x - 1}f(x - y)+\sum_{z - 2}^{x}f(\lfloor \frac{x}{z} \rfloor) f(x)=y=1x1f(xy)+z2xf(zx)

D1的subtask n是2e5, 刚开始以为按cf的尿性大概nlogn,后来摸了下才感觉到是整数分块,根号,还是蔡了。

前半段前缀和维护,后半段整数分块。 z < n z <\sqrt{n} z<n 按z枚举, z ≥ n z \ge\sqrt{n} zn 按结果枚举,对每个结果定左右边界

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const ll N = 2e5 + 10;

ll n, mod;
ll dp[N], pre[N];

ll getAns(ll x) {
    ll res = 0;
    for (ll i = 1; i <= x / i; ++i) {
        ll r = x / i;
        ll l = x / (i + 1);
        ll tmp = (((r - l) % mod )* (dp[i] % mod) )% mod;
        res = (res + tmp) % mod;
    }
    for(ll i = 1; i < x/ i; ++ i) {
        res = (res+ dp[x / i])%mod;
    }
    return res;
}

signed main() {
    ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);

    cin >> n >> mod;

    dp[0] = dp[1] = 1;
    pre[1] = 1;
    for (ll i = 2; i <= n; ++i) {
        dp[i] = (pre[i - 1] + getAns(i)) % mod;
        pre[i] = (pre[i - 1] + dp[i]) % mod;
    }
    cout << dp[n] << endl;
    return 0;
}

D2 4e6,代码最后其实比D1短。

考虑角度是:从f(x + 1) 比 f(x) 多了什么入手。

把式子重新搬过来:

f ( x ) = ∑ y = 1 x − 1 f ( x − y ) + ∑ z − 2 x f ( ⌊ x z ⌋ ) f(x) = \sum_{y =1}^{x - 1}f(x - y)+\sum_{z - 2}^{x}f(\lfloor \frac{x}{z} \rfloor) f(x)=y=1x1f(xy)+z2xf(zx)

前半段多了一个f(x);

后半段多了一个f(1), (因为 x + 1 x + 1 = 1 \frac{x +1}{x+ 1} = 1 x+1x+1=1),另外每个分子x都变成了x+1,但因为下取整,只有在z|x的时候有影响,反过来用类似埃氏筛的思想对每个 z ∣ x , ⌊ x z ⌋ = c z|x, \lfloor\frac{x}{z}\rfloor = c zx,zx=c 的c去枚举,并对c的每个倍数进行 + f ( c ) − f ( c − 1 ) +f(c)-f(c - 1) +f(c)f(c1)

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const ll N = 4e6 + 10;

ll n, mod;
ll dp[N];


signed main() {
    ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);

    cin >> n >> mod;

    dp[0] = dp[1] = 1;
    dp[2] = 2;
    for (ll i = 4; i <= n; i += 2) dp[i] = (dp[i] + 1) % mod;
    for (ll i = 3; i <= n; ++i) {
        dp[i] = (dp[i] + 2 * dp[i - 1] + dp[1]) % mod;
        ll sub = dp[i] - dp[i - 1];
        for (ll j = 2 * i; j <= n; j += i) {
            dp[j] = (dp[j] + sub + mod) % mod;
        }
    }

    cout << dp[n];
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值