机器学习
Marin.L
这个作者很懒,什么都没留下…
展开
-
SVM参数及方法
SVM的基本概念一些简单的基本概念:分隔超平面:将数据集分割开来的直线叫做分隔超平面。超平面:如果数据集是N维的,那么就需要N-1维的某对象来对数据进行分割。该对象叫做超平面,也就是分类的决策边界。间隔:一个点到分割面的距离,称为点相对于分割面的距离。数据集中所有的点到分割面的最小间隔的2倍,称为分类器或数据集的间隔。最大间隔:SVM分类器是要找最大的数据集间隔。支持向量:坐落在数...原创 2020-03-01 15:05:13 · 917 阅读 · 0 评论 -
sklearn决策树实战案例
sklearn决策树实战案例#全部行都能输出from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactivity = "all"import numpy as npimport pandas as pdimport matplotlib.pyplot as p...原创 2020-02-13 10:32:33 · 565 阅读 · 0 评论 -
sklearn实战之kmeans(聚类)
kmeans聚类算法案例本篇博客只做个人对kmeans算法代码的案例展示# 常规的导包from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactive='all'import numpy as npimport pandas as pdimport matpl...原创 2020-02-11 17:25:30 · 1573 阅读 · 0 评论 -
sklearn之Knn实战乳腺癌数据案例
sklearn之Knn实战乳腺癌数据案例(此处博主不细说Knn算法的基础逻辑,有兴趣可自行百度)(导入的数据是sklearn自有的乳腺癌数据,sklearn有大量内置的数据,详细可点击sklearn数据集链接)from sklearn.datasets import load_breast_cancer#导入乳腺癌数据集的类from sklearn.neighbors import K...原创 2020-02-11 12:14:16 · 6136 阅读 · 0 评论