LeetCode 746 使用最小花费爬楼梯 题解

本文探讨了LeetCode中的746题——最小花费爬楼梯,通过动态规划方法求解。介绍了常规O(n)时间和空间复杂度的解决方案,随后优化到O(1)空间复杂度。实例分析和优化后的代码示例有助于理解如何利用滚动数组降低内存消耗。
摘要由CSDN通过智能技术生成

LeetCode 746 使用最小花费爬楼梯 题解

数组的每个索引作为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i](索引从0开始)。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 01 的元素作为初始阶梯。
示例 1:
输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:
cost 的长度将会在 [2, 1000]。
每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]

方法:动态规划:

假设数组 cost 的长度为 n,则 n 个阶梯分别对应下标 0到 n-1,楼层顶部对应下标 n,问题等价于计算达到下标 n 的最小花费。可以通过动态规划求解。
创建长度为 n+1的数组dp,其中 dp[i] 表示达到下标 i 的最小花费。
由于可以选择下标 0 或 1 作为初始阶梯,因此有 dp[0]=dp[1]=0。
2≤i≤n 时,可以从下标 i-1使用 cost[i−1] 的花费达到下标 i,或者从下标i−2 使用 cost[i−2] 的花费达到下标 i。为了使总花费最小,dp[i] 应取上述两项的最小值,因此状态转移方程如下:

dp[i]=min(dp[i−1]+cost[i−1],dp[i−2]+cost[i−2])

依次计算 dp 中的每一项的值,最终得到的 dp[n] 即为达到楼层顶部的最小花费。
但是这样的话,时间复杂度【需要依次计算每个dp 值,每个值的计算需要常数时间】和空间复杂度都是 O(n)。注意到当i≥2 时,dp[i] 只和 dp[i−1] 与dp[i−2] 有关,因此可以使用滚动数组的思想,将空间复杂度优化到 O(1)。

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        if(cost == null || cost.length == 0){
            return 0;
        }
        int[] dp = new int[cost.length + 1];
        for(int i = 2; i <= cost.length; i++){
            dp[i] = Math.min((dp[i-2] + cost[i-2]), (dp[i-1] + cost[i-1]));
        }
        return dp[cost.length];
    }
}

优化:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        if(cost == null || cost.length == 0){
            return 0;
        }
        int pre = 0;//dp[0],dp[i-2]
        int cur = 0;//dp[1],dp[i-1]
        for(int i = 2; i <= cost.length; i++){
            int next = Math.min((pre + cost[i-2]), (cur + cost[i-1]));//dp[i]
            pre = cur;
            cur = next;
        }
        return cur;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值