记录一次装tensorflow
目前是在电脑上已经安装了cuda12.6和cudnn,然后安装了最新版的pytorch。
若想和我配一模一样的环境,可参考我安装的下列软件和包。
下面三个在https://download.pytorch.org/whl/下载,使用pip install+文件路径安装
cuda_12.6.3_561.17_windows
cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip
torch-2.5.1+cu124-cp312-cp312-win_amd64.whl
torchaudio-2.5.1+cu124-cp312-cp312-win_amd64.whl
torchvision-0.20.1+cu124-cp312-cp312-win_amd64.whl
然后又要用到tensorflow,但最新版tensorflow不支持gpu了,低版本又不支持cuda12.6的高版本。
网上摸索了一下,终于成功安装了tensorflow2.10。一开始用conda安装了一个cpu版的tensorflow2.10,然后改成了gpu版的tensorflow2.10,但conda里没有,所以用pip安装。很多库的版本是conda安装cpu版的tensorflow2.10自动安的,发现这些库在gpu版的tensorflow2.10也能运行。因此下面把这些库的版本直接指定出来。
首先重新创建一个conda环境,python=3.9.18。然后运行这几行命令
conda install cudatoolkit=11.3 cudnn=8.2.1
pip install tensorflow-gpu==2.10.0 keras==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
conda install numpy=1.26.4
conda install scipy=1.13.1
用下列代码测试:
# 导入Keras库
import keras
# 导入TensorFlow库
import tensorflow as tf
# 检查当前系统是否可用GPU资源
print('GPU available: {}'.format(tf.test.is_gpu_available()))
# 打印TensorFlow的版本号
print('TensorFlow version: {}'.format(tf.__version__))
# 打印Keras的版本号
print('Keras version: {}'.format(keras.__version__))
# 获取TensorFlow的构建信息
build = tf.sysconfig.get_build_info()
# 打印CUDA的版本号(如果已安装)·
print('CUDA version: {}'.format(build['cuda_version']))
# 打印cuDNN的版本号(如果已安装)
print('cuDNN version: {}'.format(build['cudnn_version']))
成功运行: