windows cuda12.6 安装tensorflow gpu 版本和pytorch共存

记录一次装tensorflow

目前是在电脑上已经安装了cuda12.6和cudnn,然后安装了最新版的pytorch。

若想和我配一模一样的环境,可参考我安装的下列软件和包。
下面三个在https://download.pytorch.org/whl/下载,使用pip install+文件路径安装

cuda_12.6.3_561.17_windows
cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip
torch-2.5.1+cu124-cp312-cp312-win_amd64.whl       
torchaudio-2.5.1+cu124-cp312-cp312-win_amd64.whl  
torchvision-0.20.1+cu124-cp312-cp312-win_amd64.whl   

然后又要用到tensorflow,但最新版tensorflow不支持gpu了,低版本又不支持cuda12.6的高版本。

网上摸索了一下,终于成功安装了tensorflow2.10。一开始用conda安装了一个cpu版的tensorflow2.10,然后改成了gpu版的tensorflow2.10,但conda里没有,所以用pip安装。很多库的版本是conda安装cpu版的tensorflow2.10自动安的,发现这些库在gpu版的tensorflow2.10也能运行。因此下面把这些库的版本直接指定出来。

首先重新创建一个conda环境,python=3.9.18。然后运行这几行命令

conda install cudatoolkit=11.3 cudnn=8.2.1

pip install tensorflow-gpu==2.10.0 keras==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

conda install numpy=1.26.4 

conda install scipy=1.13.1

用下列代码测试:

# 导入Keras库
import keras

# 导入TensorFlow库
import tensorflow as tf

# 检查当前系统是否可用GPU资源
print('GPU available: {}'.format(tf.test.is_gpu_available()))

# 打印TensorFlow的版本号
print('TensorFlow version: {}'.format(tf.__version__))

# 打印Keras的版本号
print('Keras version: {}'.format(keras.__version__))
# 获取TensorFlow的构建信息
build = tf.sysconfig.get_build_info()


# 打印CUDA的版本号(如果已安装)·
print('CUDA version: {}'.format(build['cuda_version']))
# 打印cuDNN的版本号(如果已安装)
print('cuDNN version: {}'.format(build['cudnn_version']))

成功运行:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值