Tensorflow1.0 第五集:卷积神经网络CNN的MNIST数据集

Tensorflow1.0 第五集:卷积神经网络CNN的MNIST数据集


卷积、卷积核

就是做卷积计算

池化

就是最大池化和平均池化那些玩意

Padding

SAME PADDING: 给平面外部补0 卷积窗口采样后得到一个跟原来平面大小相同的平面

VALID PADDING: 不会超出平面外部卷积窗口采样后得到一个比原来平面小的平面

假如有一个 28 × 28 28\times28 28×28的平面,用 2 × 2 2\times2 2×2并且步长为2的窗口对其进行pooling操作,
使用SAME PADDING的方式,得到 14 × 14 14 \times14 14×14的平面;
使用VALID PADDING的方式,得到 14 × 14 14 \times14 14×14的平面。

假如有一个 2 × 3 2\times3 2×3的平面,用 2 × 2 2\times2 2×2并且步长为2的窗口对其进行pooling操作,
使用SAME PADDING的方式,得到 1 × 2 1\times2 1×2的平面;
使用VALID PADDING的方式,得到 1 × 1 1\times1 1×1的平面。


代码

### CNN

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# 每个批次的大小
batch_size = 100
# 计算一共有多少哥批次
n_batch = mnist.train.num_examples // batch_size

# 初始化权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

# 初始化偏置
def bias_variable(shape):
    initial = tf.constant(0, 1, shape=shape)
    return tf.Variable(initial)

# 卷积层
def con2d(x, W):
    # x: input tensor of shape '[batch, in_height, in_width, in_channels]'
    # W: filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
    # strides[0] = strides[3] = 1, strides[1]代表x方向的步长,strides[2]代表y方向的步长
    # padding: A 'string' from: "SAME", "VALID"
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# 池化层
def max_pool_2x2(x):
    # ksize [1,x,y,1]: 窗口大小 这里是2*2的
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])

# 改变x的格式为4D的向量 [batch, in_height, in_width, in_channels]
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 最后一个1说明是黑白图片,彩色是3

# 初始化第一个卷积层的权值和偏置
W_conv1 = weight_variable([5, 5, 1, 32]) # 5*5的采样窗口,32个卷积核从1个平面抽取特征 # 1是输入通道数,和上面的1一样
b_conv1 = bias_variable([32]) # 每一个卷积核只需要一个偏置值

# 把x_image和权值向量进行卷积,再加上偏置值,应用于relu激活函数
h_conv1 = tf.nn.relu(con2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# 初始化第二个卷积层的权值和偏置
W_conv2 = weight_variable([5, 5, 32, 64]) # 5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2 = bias_variable([64]) # 每一个卷积核只需要一个偏置值

# 把h_pool1和权值向量进行卷积,再加上偏置值,应用于relu激活函数
h_conv2 = tf.nn.relu(con2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# 28*28的图片第一次卷积后还是28*28, 第一次池化后变成14*14
# 第二次卷积后14*14, 第二次池化后变成7*7
# 通过上述操作后得到64张7*7的平面

# 把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) # -1是任意值的意思

# 初始化第一个全连接层的权值
W_fc1 = weight_variable([7*7*64, 1024]) #上一层一共有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024])

# 求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# keep_prob用来表示神经元的输出概率 Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 初始化第二个全连接层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

# 计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


## 交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))

train_step = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(20):
        for batch in range(n_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0})

        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})
        print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

啊怎么照着打都会打错。。找错太难了。。。我不管我敲了一遍四舍五入就等于我会了!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值