【深度之眼花书训练营第五期】第一周-数学基础-课程2

第一周-数学基础的学习大纲

1. 矩阵对角化,SVD分解以及应用
2. 逆矩阵,伪逆矩阵
3. PCA原理与推导
4. 极大似然估计,误差的高斯分布与最小二乘估计的等价性
5. 最优化,无约束,有约束,拉格朗日乘子的意义,KKT条件

课程2 逆矩阵,伪逆矩阵,最小二乘解,最小范数解;PCA原理与推导

1. 逆矩阵,伪逆矩阵,最小二乘解,最小范数解

𝑥1, 𝑥2, ⋯ , 𝑥𝑁, 𝑥𝑖 ∈ ℝ𝑛
𝑦1, 𝑦2, ⋯ , 𝑦𝑁, 𝑦𝑖 ∈ ℝ1
𝑦1 = 𝑥11𝑎1 + 𝑥12𝑎2 + ⋯ + 𝑥1𝑛𝑎𝑛
𝑦2 = 𝑥21𝑎1 + 𝑥22𝑎2 + ⋯ + 𝑥2𝑛𝑎𝑛

𝑦𝑁 = 𝑥𝑁1𝑎1 + 𝑥𝑁2𝑎2 + ⋯ + 𝑥𝑁𝑛𝑎𝑛

在这里插入图片描述
𝑋𝑁×𝑛𝑎𝑛×1 = 𝑌𝑁×1
当𝑁 = 𝑛且𝑋𝑁×𝑛可逆时:
𝑎 = 𝑋−1𝑌s

一般情况:𝑁 ≠ n

设min||X𝑎 − 𝑌||2 = 𝐽
则对矩阵求导可得,𝜕𝐽/𝜕𝑎= X𝑇(X𝑎 − 𝑌) = 0
X𝑇X𝑎 = X𝑇𝑌 X𝑇X是否可逆?

补充:矩阵可逆的条件:
R(A)=n,即若矩阵满秩则矩阵可逆
秩的定义:矩阵中所有行向量中极大线性无关组的元素个数。

1. N > n
如 𝑁 = 5, 𝑛 = 3 (X𝑇X)3×3一般是可逆的
补充: R(AB)<<R(A)或R(B)

则 𝑎 = (X𝑇X)(−1)X𝑇𝑌
此时(X𝑇X)(−1)X𝑇𝑌即为伪逆矩阵

2. 𝑁 < 𝑛
如 𝑁 = 3, 𝑛 = 5 (X𝑇X)5×5
𝑅(X𝑇X) ≤ 𝑅(X) ≤ 3
故X𝑇X不可逆
此时就需要加上正则项得,
在这里插入图片描述
在这里插入图片描述
这里所求的解便是最小范数解

2. PCA原理与推导

PCA仍然是一种数据压缩的算法

如图所示,A点需要x,y两个坐标来表示,假设A在向量u上面的投影点为A’,则A’仅仅需要一个参数就能表示,就是OA’的长度(即A’在u上的坐标),我们就想着用A’来替换A,这样N个点(原来要2*N个参数),现在只需要(N+2)个参数(u也需要2 个参数)
在这里插入图片描述
但是此时就带来了误差,如AA’和BB’,所以我们要能够找到这样一个方向u,使得所有原始点与投影点之间的误差最小。

后续将继续更新课程内容. . . .

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值