分析变态跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

n = 1时,只有一种跳法

n = 2时,两种跳法

n>2时,第一步可能 跳1,2,3.....,n步

f(n) = f(n-1) + f(n-2) + ..... + f(1) + 1

public class Solution {
    public int JumpFloorII(int target) {
        if(target==1){
            return 1;
        }
        if(target==2){
            return 2;
        }
        int ret = 1;
        while(target-1>=1){
            ret += JumpFloorII(target-1);
            target--;
        }
        return ret;
    }
}

事实上,对于  f(n) = f(n-1) + f(n-2) + ..... + f(1) + 1

                                = 2* [  f(n-2) + f(n-3) + ... + f(1) + 1 ]

                                = 2*2 [ f(n-3) + ..... f(1) + 1]

                                = pow(2,n-2)*[ f(1) + 1]

                                = pow(2,n-1)

故,非常简单!!!

public class Solution {
    public int JumpFloorII(int target) {
        return (int) Math.pow(2,target-1);
    }
}

可以看到,有些问题的代码很简单,但是分析的过程非常重要,算法最重要的不是代码,而是它的数学分析。

注:当然可以计算前几个台阶的跳法而找出规律,上面这个过程是严格的分析证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值