题目链接:点击这里
题目大意:
给定一个长度为
n
n
n ,的序列
a
1
,
a
2
,
.
.
.
a
n
a_1,a_2,...a_n
a1,a2,...an ,有
m
m
m 次查询,每次查询给出
l
,
r
l,r
l,r ,求区间
[
l
,
r
]
[l,r]
[l,r] 最少被几个严格上升的序列覆盖
题目分析:
一个经典的转化:区间最少被几个严格上升的序列覆盖可以等价的看成区间众数的出现次数。
因为覆盖区间的序列是严格上升的,所以每一个覆盖区间最多存在一个众数,所以上述转化得证
离线区间计数问题考虑用莫队来做
设
c
n
t
[
i
]
cnt[i]
cnt[i] 表示
i
i
i 出现的次数,
n
u
m
[
i
]
num[i]
num[i] 表示出现了
i
i
i 次的数有多少个,加数时就把当前数的
c
n
t
cnt
cnt 和之前的最优解取个
m
a
x
max
max ,删数时如果
n
u
m
[
c
n
t
]
=
=
1
num[cnt]==1
num[cnt]==1 而且
c
n
t
cnt
cnt 和之前的最优解相等,那么此时的最优解就是之前的最优解
−
1
-1
−1
具体细节见代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
int read()
{
int res = 0,flag = 1;
char ch = getchar();
while(ch<'0' || ch>'9')
{
if(ch == '-') flag = -1;
ch = getchar();
}
while(ch>='0' && ch<='9')
{
res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
ch = getchar();
}
return res*flag;
}
const int maxn = 2e5+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
int n,m,block,now,a[maxn],cnt[maxn],num[maxn],ans[maxn];
vector<int>v;
struct query{
int l,r,id;
friend bool operator < (const query &a,const query &b)
{
return a.l/block ^ b.l/block ? a.l<b.l : (a.l/block)&1 ? a.r<b.r : a.r>b.r;
}
}q[maxn];
void add(int pos)
{
num[cnt[pos]]--;
num[++cnt[pos]]++;
now = max(now,cnt[pos]);
}
void del(int pos)
{
num[cnt[pos]]--;
if(cnt[pos]==now && !num[cnt[pos]]) now--;
num[--cnt[pos]]++;
}
int main()
{
n = read(),m = read();
for(int i = 1;i <= n;i++)
v.push_back(a[i] = read());
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
for(int i = 1;i <= n;i++)
a[i] = lower_bound(v.begin(),v.end(),a[i])-v.begin();
block = max(n/(sqrt(m*2/3)),1.0);
for(int i = 1;i <= m;i++)
q[i].l = read(),q[i].r = read(),q[i].id = i;
sort(q+1,q+m+1);
int l = 1,r = 0;
for(int i = 1;i <= m;i++)
{
int ql = q[i].l,qr = q[i].r;
while(l < ql) del(a[l++]);
while(l > ql) add(a[--l]);
while(r < qr) add(a[++r]);
while(r > qr) del(a[r--]);
ans[q[i].id] = now;
}
for(int i = 1;i <= m;i++)
printf("%d\n",-ans[i]);
return 0;
}