P3709 大爷的字符串题 (莫队)

题目链接:点击这里

题目大意:
给定一个长度为 n n n ,的序列 a 1 , a 2 , . . . a n a_1,a_2,...a_n a1,a2,...an ,有 m m m 次查询,每次查询给出 l , r l,r l,r ,求区间 [ l , r ] [l,r] [l,r] 最少被几个严格上升的序列覆盖

题目分析:
一个经典的转化:区间最少被几个严格上升的序列覆盖可以等价的看成区间众数的出现次数。
因为覆盖区间的序列是严格上升的,所以每一个覆盖区间最多存在一个众数,所以上述转化得证
离线区间计数问题考虑用莫队来做
c n t [ i ] cnt[i] cnt[i] 表示 i i i 出现的次数, n u m [ i ] num[i] num[i] 表示出现了 i i i 次的数有多少个,加数时就把当前数的 c n t cnt cnt 和之前的最优解取个 m a x max max ,删数时如果 n u m [ c n t ] = = 1 num[cnt]==1 num[cnt]==1 而且 c n t cnt cnt 和之前的最优解相等,那么此时的最优解就是之前的最优解 − 1 -1 1

具体细节见代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
int read()
{
	int res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 2e5+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
int n,m,block,now,a[maxn],cnt[maxn],num[maxn],ans[maxn];
vector<int>v;
struct query{
	int l,r,id;
	friend bool operator < (const query &a,const query &b)
	{
		return a.l/block ^ b.l/block ? a.l<b.l : (a.l/block)&1 ? a.r<b.r : a.r>b.r;
	}
}q[maxn];
void add(int pos)
{
	num[cnt[pos]]--;
	num[++cnt[pos]]++;
	now = max(now,cnt[pos]);
}
void del(int pos)
{
	num[cnt[pos]]--;
	if(cnt[pos]==now && !num[cnt[pos]]) now--;
	num[--cnt[pos]]++;
}
int main()
{
	n = read(),m = read();
	for(int i = 1;i <= n;i++)
		v.push_back(a[i] = read());
	sort(v.begin(),v.end());
	v.erase(unique(v.begin(),v.end()),v.end());
	for(int i = 1;i <= n;i++)
		a[i] = lower_bound(v.begin(),v.end(),a[i])-v.begin();
	block = max(n/(sqrt(m*2/3)),1.0);
	for(int i = 1;i <= m;i++)
		q[i].l = read(),q[i].r = read(),q[i].id = i;
	sort(q+1,q+m+1);
	int l = 1,r = 0;
	for(int i = 1;i <= m;i++)
	{
		int ql = q[i].l,qr = q[i].r;
		while(l < ql) del(a[l++]);
		while(l > ql) add(a[--l]);
		while(r < qr) add(a[++r]);
		while(r > qr) del(a[r--]);
		ans[q[i].id] = now;
	}
	for(int i = 1;i <= m;i++)
		printf("%d\n",-ans[i]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值