P2371 [国家集训队]墨墨的等式(同余最短路)

题目链接:点击这里

题目大意:
给定 n n n 个整数 a i a_i ai ,和 l , r l,r l,r ∑ i = 1 n a i x i = n ( n ∈ [ l , r ] ) \sum_{i=1}^na_ix_i=n(n\in [l,r]) i=1naixi=n(n[l,r]) 有多少组非负整数解

题目分析:
同样是同余最短路的模型,还是套路的取 a 1 a_1 a1 作为 b a s e base base ,然后建出 0 0 0 a 1 − 1 a_1-1 a11 a 1 a_1 a1 个点,然后对每个点连出 n − 1 n-1 n1 条边:连接 i i i ( i + v a l ) m o d    a 1 (i+val)\mod a_1 (i+val)moda1 边权为 v a l val val ,然后因为是求 [ l , r ] [l,r] [l,r] 范围的解数量,不难想到转换为求出 [ 1 , r ] [1,r] [1,r] 的解的数量再减去 [ 1 , l − 1 ] [1,l-1] [1,l1] 的解的数量

具体细节见代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<set>
#include<map>
#define ll long long
#define inf 0x3f3f3f3f
#define Inf 0x3f3f3f3f3f3f3f3f
#define int ll
using namespace std;
int read()
{
	int res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 5e5+5;
const int maxm = 5005;
const int mod = 998244353;
const double pi = acos(-1);
const double eps = 1e-8;
struct Edge{
	int nxt,to,val;
}edge[maxn*13];
int n,m,l,r,a[maxn],cnt,head[maxn],dis[maxn];
bool vis[maxn];
void addedge(int from,int to,int val)
{
	edge[++cnt].nxt = head[from];
	edge[cnt].to = to;
	edge[cnt].val = val;
	head[from] = cnt;
}
struct node{
	int id,dis;
	bool operator < (const node &b) const {
		return dis > b.dis;
	}
};
void dijkstra(int s)
{
	memset(dis,0x3f,sizeof(dis));
	dis[s] = 0;
	priority_queue<node>qu;
	qu.push({s,0});
	while(!qu.empty())
	{
		int h = qu.top().id;qu.pop();
		if(vis[h]) continue;
		vis[h] = true;
		for(int i = head[h];i;i = edge[i].nxt)
		{
			int to = edge[i].to,val = edge[i].val;
			if(dis[to] > dis[h]+val)
			{
				dis[to] = dis[h]+val;
				qu.push({to,dis[to]});
			}
		}
	}
}
int solve(int x)
{
	int res = 0;
	for(int i = 0;i < a[1];i++) 
		if(dis[i] <= x) res += (x-dis[i])/a[1]+1;
	return res;
}
signed main()
{
	n = read(),l = read(),r = read();
	for(int i = 1;i <= n;i++) a[i] = read();
	for(int i = 0;i < a[1];i++)
		for(int j = 2;j <= n;j++) addedge(i,(i+a[j])%a[1],a[j]);
	dijkstra(0);
	printf("%lld\n",solve(r)-solve(l-1));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值