P6657 【模板】LGV 引理

题目链接:点击这里

题目大意:
有一个 n × n n\times n n×n 的棋盘,左下角为 ( 1 , 1 ) (1,1) (1,1),右上角为 ( n , n ) (n,n) (n,n),若一个棋子在点 ( x , y ) (x,y) (x,y),那么走一步只能走到 ( x + 1 , y ) (x+1,y) (x+1,y) ( x , y + 1 ) (x,y+1) (x,y+1)

现在有 m m m 个棋子,第 i i i 个棋子一开始放在 ( a i , 1 ) (a_i,1) (ai,1),最终要走到 ( b i , n ) (b_i,n) (bi,n) 。问有多少种方案,使得每个棋子都能从起点走到终点,且对于所有棋子,走过路径上的点互不相交。输出方案数   m o d     998244353 \bmod\ 998244353 mod 998244353 的值。

两种方案不同当且仅当存在至少一个棋子所经过的点不同。

题目分析:
L G V LGV LGV 引理:
G G G 是一个有限的带权有向无环图。每个顶点的度是有限的,不存在有向环(所以路径数量是有限的)。
起点 A = { a 1 , ⋯   , a n } A=\{a_1,\cdots,a_n\} A={a1,,an},终点 B = { b 1 , ⋯   , b n } B=\{b_1,\cdots,b_n\} B={b1,,bn}
每条边 e e e 有权 w e w_e we ,并假定值属于某交换环 。
对于一个有向路径 P P P,定义 ω ( P ) \omega(P) ω(P) 为路径上所有边权的积。
对任意顶点 a a a b b b ,定义 e ( a , b ) = ∑ P : a → b ω ( P ) e(a,b)=\sum\limits_{P:a \to b}{\omega(P)} e(a,b)=P:abω(P)
设矩阵
M = ( e ( a 1 , b 1 ) e ( a 1 , b 2 ) ⋯ e ( a 1 , b n ) e ( a 2 , b 1 ) e ( a 2 , b 2 ) ⋯ e ( a 2 , b n ) ⋮ ⋮ ⋱ ⋮ e ( a n , b 1 ) e ( a n , b 2 ) ⋯ e ( a n , b n ) ) M= \begin{pmatrix} e(a_1,b_1) & e(a_1,b_2) & \cdots & e(a_1,b_n) \\ e(a_2,b_1) & e(a_2,b_2) & \cdots & e(a_2,b_n) \\ \vdots & \vdots & \ddots & \vdots \\ e(a_n,b_1) & e(a_n,b_2) & \cdots & e(a_n,b_n) \\ \end{pmatrix} M=e(a1,b1)e(a2,b1)e(an,b1)e(a1,b2)e(a2,b2)e(an,b2)e(a1,bn)e(a2,bn)e(an,bn)
那么 A A A B B B 的所有不相交的路径条数为 det ⁡ ( M ) \det(M) det(M)

对于本题:
由于是求方案数所以可以把边权抽象成 1 1 1
e ( a i , b j ) e(a_i,b_j) e(ai,bj) 可以利用排列组合来计算,就是从 ( a i , 1 ) (a_i,1) (ai,1) 走到 ( b j , n ) (b_j,n) (bj,n) 的方案数,即 C b j − a i + n − 1 n − 1 C_{b_j-a_i+n-1}^{n-1} Cbjai+n1n1
然后套一个高斯消元求行列式即可
时间复杂度为 O ( n + m 3 ) O(n+m^3) O(n+m3)

具体细节见代码:

//#pragma GCC optimize(2)
//#pragma GCC optimize("Ofast","inline","-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<queue>
#define ll long long
#define inf 0x3f3f3f3f
//#define int  ll
#define endl '\n'
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
using namespace std;
int read()
{
	int res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 2e6+5;
const int mod = 998244353;
const double pi = acos(-1);
const double eps = 1e-8;
int n,m,a[maxn],b[maxn],fac[maxn],inv[maxn],mat[105][105];
int qpow(int a,int b)
{
	int res = 1;
	while(b)
	{
		if(b&1) res = (ll)res*a%mod;
		a = (ll)a*a%mod;
		b >>= 1;
	}
	return res;
}
int Gauss(int a[][105],int n,const int p) // 求行列式 
{
	int res = 1;
	for(int i = 1;i <= n;i++)
	{
		int pos = i;
		for(int j = i+1;j <= n;j++)
			if(a[j][i] > a[pos][i]) pos = j;
		if(!a[pos][i]) return 0;
		if(i^pos) swap(a[i],a[pos]),res *= -1;
		for(int j = i+1;j <= n;j++)
		{
			if(a[j][i] > a[i][i]) swap(a[j],a[i]),res *= -1;
			while(a[j][i])
			{
				int tmp = a[i][i]/a[j][i];
				for(int k = i;k <= n;k++)
					a[i][k] = (a[i][k]+(ll)(p-tmp)*a[j][k])%p;
				swap(a[j],a[i]),res *= -1;
			}
		}
	}
	for(int i = 1;i <= n;i++) res = (ll)res*a[i][i]%p;
	return (res+p)%p;
} 
int C(int n,int m)
{
	if(n < m) return 0;
	return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main() 
{
	fac[0] = 1;
	for(int i = 1;i < maxn;i++) fac[i] = (ll)fac[i-1]*i%mod;
	inv[maxn-1] = qpow(fac[maxn-1],mod-2);
	for(int i = maxn-1;i;i--) inv[i-1] = (ll)inv[i]*i%mod;
	int t = read();
	while(t--)
	{
		n = read(),m = read();
		for(int i = 1;i <= m;i++) a[i] = read(),b[i] = read();
		for(int i = 1;i <= m;i++)
			for(int j = 1;j <= m;j++) mat[i][j] = C(b[j]-a[i]+n-1,n-1);
		cout<<Gauss(mat,m,mod)<<endl;
	}
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值