SAGE(SAGEMATH)密码学基本使用方法

本文介绍了SAGEMATH在密码学中的应用,包括使用扩展欧几里得算法求逆元,实现孙子定理(中国剩余定理),解决离散对数问题,取模求根,计算欧拉函数,估算素数分布Pi(x),以及创建并分析整数域中的椭圆曲线及其整数点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求逆元

inv=inverse_mod(30,1373)
print(30*inv%1373) #1

扩展欧几里得算法

d,u,v=xgcd(20,30)
print("d:{0} u:{1} v:{2}".format(d,u,v))#d:10 u:-1 v:1

孙子定理(中国剩余定理)

计算参考:
https://blog.csdn.net/destiny1507/article/details/81751168

def chinese_remainder(modulus, remainders):
    Sum = 0
    prod = reduce(lambda a, b: a*b, modulus)
    for m_i, r_i in zip(modulus, remainders):
        p = prod // m_i
        Sum += r_i * (inverse_mod(p,m_i)*p)
    return Sum % prod
chinese_remainder([3,5,7],[2,3,2]) #23

求离散对数

2 x ≡ 13 m o d    23 2^x \equiv13 \mod23 2x13

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值