布隆过滤器的应用

  • 布隆过滤器虽然看起来是一个“算法结构”,但在实际 Web 应用场景中用途非常广泛,尤其在 提升性能、节省资源、防御攻击 等方面非常有用。

缓存穿透保护(常见于 Redis)

📌 问题:

  • 用户频繁请求一些数据库中根本不存在的资源,导致每次都要访问数据库,绕过缓存,造成数据库压力

✅ 用法:

  • 在访问缓存前先用布隆过滤器判断 key 是否可能存在:
if !bloomFilter.MightContain(key) {
    return "Not Found" // 直接拒绝
}
value := redis.Get(key)
if value == nil {
    value = db.Query(key)
    if value != nil {
        redis.Set(key, value)
    }
}

✅ 好处:

  • 拦截大量无效请求
  • 缓解缓存穿透问题
  • 提升整体系统抗压能力

防止重复提交 / 重复注册

📌 场景:

  • 表单重复提交
  • 用户频繁尝试用同一个邮箱注册

✅ 用法:

  • 用布隆过滤器预判该数据是否已存在:
if bloomFilter.MightContain(email) {
    return "Email already used or likely used"
}

✅ 优点:

  • 在接口层拦截重复操作
  • 避免数据库压力

用户黑名单拦截

📌 场景:

  • 某些 IP 或 token 被封禁,需要快速判断是否命中黑名单。

✅ 用法:

  • 系统启动时将黑名单加载进布隆过滤器:
if bloomFilter.MightContain(userIP) {
    return "Access Denied"
}

✅ 优点:

  • 快速拒绝访问,无需查数据库
  • 支持大规模用户数据

短链接服务去重 / 防止碰撞

📌 场景:

  • 在生成短链接时,需要确保新的 key 没被使用过。

✅ 用法:

  • 生成新 key 前,用布隆过滤器判断是否可能存在
if bloomFilter.MightContain(newShortCode) {
    regenerate()
}

搜索引擎爬虫去重(页面URL)

📌 场景:

  • 需要避免爬虫反复访问同一页面。

✅ 用法:

  • 每次爬虫访问新 URL 之前,用布隆过滤器做判断:
if !bloomFilter.MightContain(url) {
    bloomFilter.Add(url)
    crawl(url)
}

用 Go + Redis 快速实现布隆过滤器保护缓存

  • 在实际生产中,通常布隆过滤器会用 Redis、Go、Python 或 C 实现,还可以和 Golang 的 Web 框架(如 Gin)结合:

示例(伪代码结构):

func GetUserProfile(c *gin.Context) {
    userID := c.Query("id")

    // 快速拦截非法 ID
    if !bloomFilter.MightContain(userID) {
        c.JSON(404, gin.H{"msg": "user not found"})
        return
    }

    // 然后再查缓存 / DB
    data := redis.Get("user:" + userID)
    if data == nil {
        data = db.QueryUser(userID)
        redis.Set("user:"+userID, data)
    }

    c.JSON(200, data)
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值