- 博客(20)
- 收藏
- 关注
原创 基于CodeServer打造一个属于自己的 LaTeX Web 编辑器
本文介绍了如何自建一个轻量、高效、可定制的LaTeX Web编辑器,以替代Overleaf。教程基于code-server(VS Code网页版)、TeX Live完整版和Docker技术栈,通过Dockerfile构建包含完整LaTeX环境的镜像,并配置docker-compose.yaml实现一键部署。最终用户可通过浏览器访问编辑器,支持中文环境、多种编译工具和LaTeX Workshop插件的高级功能。相比Overleaf,该方案具有访问速度快、部署灵活、功能可定制等优势,适合国内用户和需要特定配置的
2025-12-23 15:54:42
867
原创 解决飞牛OS应用中心无法开机自启
摘要:飞牛OS应用中心无法开机自启的问题通常是由于USB硬盘挂载速度慢于系统启动速度导致的竞态条件。解决方案是通过SSH修改trim_app_center.service文件,在[Service]部分添加ExecStartPre=/bin/sleep 30指令,强制服务等待30秒后再启动。修改后需执行systemctl daemon-reload和systemctl restart trim_app_center使配置生效。重启后应用将正常自启。建议USB存储用户确保独立供电、直连主板接口并关闭硬盘休眠功能
2025-12-09 10:51:42
786
原创 从零开始搭建私有服务器并部署网站
云服务器:仅作“跳板”,低成本 + 高带宽即可;私有服务器:承担实际负载,性能强、自由度高;frp 实现内网穿透,1Panel 简化部署;域名 + Nginx 实现多站共存。💡 本方案兼顾低成本、高性能、可备案,适合个人开发者、极客玩家。如有疑问,欢迎结合 AI 工具深入理解网络原理。祝你部署顺利!
2025-10-05 18:36:35
990
原创 PreciseRoIPooling/pytorch/prroi_pool/src/prroi_pooling_gpu_impl.cu(1): error: expected a declaration
*
2025-09-28 22:21:22
206
原创 在 WSL 中配置与运行 pytracking 环境指南
本文提供了在WSL环境下配置pytracking目标跟踪库的完整指南,包括必需的环境依赖安装(如PyTorch 1.13.1、NumPy<2)、详细的依赖包列表和初始化配置文件步骤。作者分享了百度网盘资源链接,并强调必须使用指定版本的opencv-python(4.11.0.86)以避免兼容性问题。指南还包含验证环境是否配置成功的简单训练脚本说明,特别提醒所有操作应在WSL中进行以保证最佳兼容性。
2025-09-27 00:00:33
474
原创 MMDetection 安装教程(避坑版)
由于 MMDetection 官方文档未及时更新,直接按其教程安装容易出现版本冲突。本教程使用和,确保兼容性。
2025-08-04 16:40:10
1231
1
原创 Flutter 环境配置完整教程(Windows/macOS)
替换为你的实际版本(查看原文件中的版本号)现在可以开始开发 Flutter 应用了。(如 Clash)开启全局代理。(Windows 选。
2025-06-29 21:06:36
1317
1
原创 Nginx 反向代理配置不当引发的 CSRF 验证失败问题详解
摘要:Nginx 反向代理配置不当可能导致 Django 的 CSRF 验证失败(如 403 错误)。关键问题在于 $host 与 $http_host 的差异:前者会去除端口并转为小写,而后者保留原始 Host 信息。当 Nginx 使用 $host 时,Django 接收的 Host 与前端请求的 Origin 不匹配,触发 CSRF 保护。解决方案包括:① Nginx 配置改用 $http_host;② 在 Django 中设置 CSRF_TRUSTED_ORIGINS 包含带端口的域名;③ 完善 A
2025-06-18 14:11:16
1246
原创 启用Docker 并开启 Nvidia GPU支持的教程
本教程介绍如何在飞牛OS中启用Docker并开启Nvidia GPU支持。主要内容包括: 安装Docker(可通过应用商店获取) 手动安装Nvidia显卡驱动(注意不要使用系统商店版本) 安装NVIDIA Container Toolkit,配置软件源并安装必要组件 配置Docker使用NVIDIA运行时 通过运行nvidia-smi命令验证配置是否成功 关键步骤包含驱动安装、容器工具包配置和Docker运行时设置,最终通过容器运行GPU测试命令确认配置生效。
2025-06-16 19:53:40
3380
原创 使用 Docker-in-Docker 部署 Overleaf
摘要: 本教程介绍使用Docker-in-Docker(DinD)部署Overleaf的方案,适合个人或小团队使用。通过DinD容器嵌套技术,将Overleaf及其依赖的MongoDB、Redis等服务封装在单一容器中,简化管理。步骤包括: 配置docker-compose.yaml启动DinD容器(需特权模式) 准备初始化脚本init.sh自动启动Overleaf并配置MongoDB副本集 通过daemon.json配置镜像加速源 修改官方Overleaf的docker-compose.yaml,注释沙盒
2025-06-09 17:15:45
897
原创 Paddle安装后测试正确,但使用报错:Could not locate cublasLt64_12.dll. Please make sure it is in your library path!
Paddle安装后测试正确,但使用报错:Could not locate cublasLt64_12.dll. Please make sure it is in your library path!
2024-12-10 11:00:06
1865
原创 强化学习入门
强化学习(Reinforcement Learning, RL)是一种基于反馈的机器学习技术,适用于序列决策问题。在强化学习中,智能体(Agent)通过与环境(Environment)不断交互,根据环境的反馈调整自身行为,以最大化累积奖励(Reward)。强化学习问题可以描述为一个智能体从与环境的交互中不断学习以完成特定目标(比如取得最大奖励值)。
2024-11-25 08:19:24
2682
原创 循环神经网络
为了更形式化地理解RNN,我们可以通过公式来定义它。假设我们有一个序列输入,其中x^t表示时刻t的输入向量。初始状态:通常,我们会定义一个初始隐藏状态h^0,它可以是一个零向量或根据任务需要初始化的其他值。状态更新:对于每一个时间步t,循环单元的状态h^t由当前输入x^t和前一个时间步的隐藏状态h^(t-1)共同决定。这一更新过程通过一个循环体函数ghtgxtht−1htgxtht−1其中,g。
2024-11-07 20:40:36
1826
原创 卷积神经网络详解
卷积神经网络通过卷积操作提取图像中的局部特征,并通过多层网络结构构建出强大的图像处理能力。其局部连接、权重共享和池化等操作显著减少了参数数量,提高了模型的泛化能力。在处理图像分类、目标检测等任务时,卷积神经网络展现出了卓越的性能和广泛的应用前景。
2024-11-07 19:49:50
1508
原创 人工神经网络与梯度下降法
人工神经网络(Artificial Neural Networks, ANN)是模拟生物神经元结构的计算模型,它模仿了大脑处理信息的基本方式。人工神经网络是由大量的简单处理单元——即“神经元”——组成的网络,这些神经元通过连接权重进行交互,并能够对输入数据进行复杂的非线性变换。人工神经网络通过调整连接权重来学习数据中的模式。这个过程通常涉及以下几个步骤:单个神经元示意图:对于一个简单的神经元,其输出计算公式为:a=σ(∑i=1nwixi+b)a = \sigma(\sum_{i=1}^{n} w_i
2024-10-09 16:11:35
2759
原创 机器学习入门
机器学习是人工智能的一个分支,它使计算机能够在不进行显式编程的情况下从数据中学习。简而言之,机器学习的目标是从数据中自动改进算法的行为。定义模型f(x)): 选择一个能够描述输入与输出之间关系的函数形式。定义损失函数): 设定一个度量标准来评估模型预测的准确性。优化参数: 使用优化算法调整模型参数,使得损失函数最小化。验证和测试: 在未见过的数据上验证模型性能,确保其具有良好的泛化能力。机器学习算法能够在给定的数据集上“学习”,即通过调整模型参数来逼近真实的映射关系 f。
2024-09-18 17:21:32
3021
原创 利用Pycharm与Anconda进行python开发
结构,而是将所有的代码都写在文件的顶层,那么当脚本被导入到其他模块时,所有顶级代码都会被执行,这可能不是你想要的行为,特别是在脚本中包含了一些初始化或者只应该在运行时调用的代码时。但是,如果你确定你的脚本不会被其他脚本导入,或者脚本本身就是一个简单的脚本,没有复杂的导入逻辑,那么你可以直接将你希望首先执行的代码放在脚本的顶部。在 Python 中,列表(list)是一种动态数组,可以存储不同类型的元素,并且可以在运行时改变大小。在 Java 中,数组是固定大小的数据结构,只能存储相同类型的元素。
2024-09-13 17:59:33
3077
原创 PaddlePaddle、Pytorch、tensorflow的GPU版本快速安装。(无需本机CUDA与CuDNN)
不安装本机CUDA 完成深度学习框架的安装以及GPU的调用。
2024-09-10 09:53:50
2571
1
原创 利用WSL(Windows上Linux子系统)进行深度学习开发
Windows下运行Ubuntu(WSL2) 并使用CUDA想要再Windows下使用Linux,一般有两种方法。一是使用WSL(Windows子系统),二是使用虚拟机。虚拟机不支持调用显卡。若想要在Win下使用Linux并使用CUDA,则需安装子系统。步骤如下:1.安装WSL22.安装英伟达WSL驱动3.在WSL中安装cuda1,安装WSL2在win10任务栏搜索框输入 功能 选择开启或关闭windows功能。 界面如图勾选适用于Linux的Windows子系统在Windows应用商
2021-11-11 19:43:03
2578
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅