洛谷P2502 [HAOI2006]旅行——题解

题目传送门
题目大意:
有n个点m条边,每条边有权值,试问两个点之间的所有路径中,权值最大和权值最小的比最小是多少。


思考过程:
题目询问的是权值最大和权值最小的比值,直接求比值很难拿下手,我们不妨先固定权值最小的边,再来枚举权值最大的边,这样只要使权值最大的边的权值尽量小就可以了。想到这里,算法就呼之欲出了。类似于最小生成树(克鲁斯卡尔),我们将所有的边按权值从小到大排序,从1到m枚举权值最小的边,用并查集来维护连通性,当s和t连通时break掉,记录最优答案就行了。


具体做法:
1.将所有的边按权值从小到大排序
2.从从前往后扫边,并查集判断连通性,当s和t连通时跳出循环,比较答案是否更优,更优则记录
3.输出答案时简单地讨论几种情况


代码:

#include <bits/stdc++.h>
using namespace std;

const int maxn=510,maxm=5100;
const double inf=20020816.0;
struct stu
{
    int x,y,dis;    
}road[maxm];
double ans=inf;
int ans2,ans1,n,m,s,t;
int fa[maxn];

bool cmp(stu t1,stu t2)
{
    return t1.dis<t2.dis;   
}

int find(int x)
{
    if(x==fa[x]) return x;
    return fa[x]=find(fa[x]);   
}

int gcd(int x,int y)
{
    if(!y) return x;
    return gcd(y,x%y);
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++) scanf("%d%d%d",&road[i].x,&road[i].y,&road[i].dis);
    scanf("%d%d",&s,&t);
    sort(road+1,road+1+m,cmp);
    for(int i=1;i<=m;i++)
    {
        if(road[i].dis==road[i-1].dis) continue;
        bool flag=0;
        int m1=road[i].dis,m2=road[i].dis;
        for(int j=1;j<=n;j++) fa[j]=j;
        for(int j=i;j<=m;j++)
        {   
            int p1=find(road[j].x),p2=find(road[j].y);
            if(p1!=p2) { fa[p1]=p2;m2=road[j].dis; }
            if(find(s)==find(t))
            {
                flag=1;
                break;
            }
        }
        if(!flag) break;
        double nowans=((double)m2)/((double)m1);
        if(nowans<ans) { ans=nowans;ans1=m1;ans2=m2; }
    }
    if(ans==inf) { printf("IMPOSSIBLE\n");return 0; }
    if(ans-(int)ans==0) { printf("%d\n",(int)ans);return 0; }
    int kk=gcd(ans1,ans2);
    ans1/=kk;ans2/=kk;
    printf("%d/%d\n",ans2,ans1);
    return 0;   
}
这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值