知识图谱概论

一.概念与发展

1.什么是知识图谱
  • 知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。

下图中花花绿绿的代表可以访问到的开放的项目,每个圈代表一个知识库,他们之间的关联代表不同领域之间的重合度,不同颜色代表不同领域的侧重点。
在这里插入图片描述

2.知识图谱的发展

在这里插入图片描述
KR:知识表示
NLP:自然语言处理
在这里插入图片描述

二.知识图谱的本质

  • web视角:像建立文本之间的超链接一样,建立教据之间的语义链接,并支持语义搜索。
  • NLP视角:怎样从文本中抽取语义和结构化数据。
  • KR视角:怎样利用计算机符号来表示和处理知识。
  • AI视角:怎样利用知识库。
  • DB视角:用图的方式去存储知识。

三.深度学习与知识图谱

在这里插入图片描述

  • 深度学习更多强调的是技术和算法,它的表示形式更多基于大数据的学习能力,在视频、图像、语音等方面有更好的感知、识别、判断能力。
  • 知识图谱更多体现在知识和数据的区别,更强调推理能力,并不一定要基于大数据,也可以基于小数据做推理,能够思考、推理。

三.技术概览

在这里插入图片描述

1.什么是知识表示
  • 研究怎样用计算机符号来表示人脑中的知识,以及怎样通过符号之间的运算来模拟人脑的推理过程。
  • 基于数理逻辑的知识表示---------->基于向量空间学习的分布式知识表示
    在这里插入图片描述
    在这里插入图片描述
  • 资源描述框架(Resource Description Framework,RDF)是一个使用XML语法来表示的资料模型(Datamodel),用来描述Web资源的特性,及资源与资源之间的关系。
    在这里插入图片描述
2.知识抽取

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.知识存储

在这里插入图片描述

4.知识问答

在这里插入图片描述
在这里插入图片描述

5.知识融合

在这里插入图片描述

  • 这个人不管是戴眼镜,还是怎么样的打扮,结果都是表示同一个人。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值