一.概念与发展
1.什么是知识图谱
- 知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。
下图中花花绿绿的代表可以访问到的开放的项目,每个圈代表一个知识库,他们之间的关联代表不同领域之间的重合度,不同颜色代表不同领域的侧重点。
2.知识图谱的发展
KR:知识表示
NLP:自然语言处理
二.知识图谱的本质
- web视角:像建立文本之间的超链接一样,建立教据之间的语义链接,并支持语义搜索。
- NLP视角:怎样从文本中抽取语义和结构化数据。
- KR视角:怎样利用计算机符号来表示和处理知识。
- AI视角:怎样利用知识库。
- DB视角:用图的方式去存储知识。
三.深度学习与知识图谱
- 深度学习更多强调的是技术和算法,它的表示形式更多基于大数据的学习能力,在视频、图像、语音等方面有更好的感知、识别、判断能力。
- 知识图谱更多体现在知识和数据的区别,更强调推理能力,并不一定要基于大数据,也可以基于小数据做推理,能够思考、推理。
三.技术概览
1.什么是知识表示
- 研究怎样用计算机符号来表示人脑中的知识,以及怎样通过符号之间的运算来模拟人脑的推理过程。
- 基于数理逻辑的知识表示---------->基于向量空间学习的分布式知识表示
- 资源描述框架(Resource Description Framework,RDF)是一个使用XML语法来表示的资料模型(Datamodel),用来描述Web资源的特性,及资源与资源之间的关系。
2.知识抽取
3.知识存储
4.知识问答
5.知识融合
- 这个人不管是戴眼镜,还是怎么样的打扮,结果都是表示同一个人。