【论文笔记 FSL 5】DPGN: Distribution Propagation Graph Network for Few-shot Learning(CVPR2020)

【论文笔记 FSL 5】DPGN: Distribution Propagation Graph Network for Few-shot Learning(CVPR2020)

下载地址 | 论文源码

Abstract

提出了一种用于少镜头学习的分布式传播图网络(DPGN)。它既传达了分配层次的关系,也传达了每个小样本学习任务的实例层次的关系。将所有实例的分布级关系和实例级关系结合起来,构造了一个由点图和每个节点代表一个实例的分布图组成的对偶完全图网络。DPGN采用双图结构,在几代更新中将标记信息从带标记的示例传播到未带标记的示例。这种循环信息传递关系将实例级别和分布级别的关系融合起来。在少数镜头学习基准的广泛实验中,DPGN在监督设置下的5%-12%和半监督设置下的7% -13%大大超过了最新的结果。整体流程如下图所示:
训练阶段

Contributions

  • DPGN是第一个明确地将分布传播合并到图网络中用于少镜头学习的。进一步的烧蚀研究证明了这种分布关系的有效性。
  • 设计了结合实例级关系和分布级关系的对偶完全图网络。该框架中的循环更新策略有助于使用分布信息增强实例特性。
  • 在4个流行的基准数据集上进行了广泛的实验,用于少镜头学习。与所有最先进的方法相比,DPGN在少镜头分类精度上获得了平均5% ~ 12%的显著提高。在半叠加任务中,我们的算法比现有的基于图的少镜头学习方法的性能高出7% ~ 13%。

Method

DPGN通过采用各样本与支持样本之间的对比比较来产生分布表示。
在这里插入图片描述
PG和DG更新示意图。
在这里插入图片描述

1 Learning embedding model through classification

Experiments

1 Results

miniImageNet、tieredImageNet、CUB-200-1011和CIFAR-FS数据集
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
miniImageNet数据集上半监督的准确率,High-way下准确率的表现。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值