推荐系统学习
记录学习推荐系统的一些笔记
《推荐系统实践》项亮
明尼苏达州立大学-推荐系统教程
GOD_Dian
小白白一枚
展开
-
推荐系统——数据稀疏度计算
数据稀疏度其实就是指在user-item矩阵中,有评分数据的元素占整个矩阵空间的比率。例如:有M个user,N个item,共K个评分:1-(K/(M*N))原创 2020-06-17 21:08:28 · 6199 阅读 · 4 评论 -
RS实战2——LFM算法实践(基于movielens数据集)
1.movielens数据集介绍MovieLens数据集包含多个用户对多部电影的评级数据,也包括电影元数据信息和用户属性信息。这个数据集经常用来做推荐系统,机器学习算法的测试数据集。尤其在推荐系统领域,很多著名论文都是基于这个数据集的。(PS: 它是某次具有历史意义的推荐系统竞赛所用的数据集)。下载地址为:http://files.grouplens.org/datasets/movielens/,有好几种版本,对应不同数据量,为训练方便起见,本文所用的数据为1M的部分数据。1.1数据格式movi原创 2020-06-17 20:36:14 · 2162 阅读 · 4 评论 -
RS实战1——LFM算法理论
这里是引用原创 2020-06-17 15:55:43 · 701 阅读 · 0 评论