欧拉回路算法

1 基本概念

1.1 欧拉路径和欧拉回路

欧拉路径:欧拉路是指从图中任意一个点开始到图中任意一个点结束的路径,并且图中每条边通过的且只通过一次
欧拉回路:欧拉回路是指起点和终点相同的欧拉路。
注意:如果欧拉回路,那么一定存在欧拉路径

注意: 是每条边被访问一次节点可能会被访问两次。

充分必要条件:
对于无向图,所有边都是连通的

(1)存在欧拉路径的充分必要条件:

  • 度数为奇数的点只能是0个或者2个

(2)存在欧拉回路的充分必要条件:

  • 度数为奇数的只能是0个

对于有向图,所有边都是连通的

(1)存在欧拉路径的充分必要条件:

  • 要么所有点的出度均等于入度。
  • 要么除了两个点之外,其余所有点的出度等于入度,剩余的两个点:一个满足出度比入度多1(起点),另一个满足入度比出度多1(终点)。

(2)存在欧拉回路的充分必要条件:

  • 所有点的出度均等于入度

2 欧拉路径判定算法

2.1 Fleury(弗罗莱) 算法

Fleury算法用来判断图是否是欧拉路径或欧拉回路的算法。
使用如下的欧拉图,了解Fleury算法的主要步骤。
在这里插入图片描述

  • 选节点1为起点,并将该起点加入路径中。Fleury算法选择存储欧拉路径。
    在这里插入图片描述
  • 从起点开始,一路DFS试着走出一条通路。方法是找与此节点相邻的节点。
    如果只有一个节点,则将这个点直接加入路径中。
    如果有多个相邻节点,则选择其中一条边,把相邻节点加入路径后,且删除这一条边。
    如果没有邻接节点,则从路径中弹出
    节点5和节点2都与1相邻,可以选择向5方向,也可以选择2方向。这里选择2方向,把节点2放入路径,然后置1-2这条边为删除状态。如此这般,一路经过3、4、5节点后回到1号节点。下图中标记为红色的边表示已经访问或被删除。
    在这里插入图片描述
  • 重新回到节点1,此时不再存在与节点1邻接的节点,从路径中弹也,依次可弹出5、4、3。直到碰到2号节点。
    在这里插入图片描述
  • 因为存在与2号节点邻接的节点,再次以2号节点为始点,使用DFS开路。一路上遇到6、7,且再次回到2号节点。
    在这里插入图片描述
  • 2号节点不存在与之邻接的节点,出栈。同理,7、6依次出栈。
    在这里插入图片描述
    小结:
    当有与当前节点邻接的节点时,一路DFS,直到没有邻接的尽头。些时,一轮DFS算法结束,从路径中依次弹出没有邻接节点的节点,直到遇到还有邻接节点的节点,新一轮的DFS重新开始。直到所有节点邻接的边全部访问完毕。
    编码实现:
#include <iostream>
#include <math.h>
#include <algorithm>
#include <cstring>
#include <stack>
#define INF 100000
using namespace std;
int graph[100][100];
int n,m;
stack<int> sta;
void read() {
   
	for(int i = 0; i < m; i++) {
   
		int f,t;
		cin >> f >> t;
		graph[f][t] = 1;
		graph[t][f] = 1;
	}
}
void dfs(int u) {
   
	sta.push(u);
	for(int i = 1; i <= n; i++) {
   
		if(graph[i][u] > 0) {
   
			//标记为删除
			graph[u][i] = 0;
			graph[i
很抱歉,作为一个文本AI助手,我无法提供视频资源。但是我可以为您提供欧拉回路算法的编程示例。以下是一个使用Python实现的欧拉回路算法的示例代码: ```python from collections import defaultdict class Graph: def __init__(self): self.graph = defaultdict(list) def add_edge(self, u, v): self.graph[u].append(v) self.graph[v].append(u) def dfs(self, v, visited): visited[v] = True for i in self.graph[v]: if visited[i] == False: self.dfs(i, visited) def is_connected(self): visited = [False] * (max(self.graph) + 1) for i in self.graph: if len(self.graph[i]) > 0: self.dfs(i, visited) break for i in self.graph: if visited[i] == False and len(self.graph[i]) > 0: return False return True def is_eulerian(self): if self.is_connected() == False: return False odd_degree_count = 0 for i in self.graph: if len(self.graph[i]) % 2 != 0: odd_degree_count += 1 if odd_degree_count == 0: return True elif odd_degree_count == 2: return True else: return False def eulerian_path(self): if self.is_eulerian() == False: return "No Eulerian path exists." else: return "Eulerian path exists." # 创建一个图对象 g = Graph() # 添加边 g.add_edge(1, 2) g.add_edge(1, 3) g.add_edge(2, 3) g.add_edge(2, 4) g.add_edge(3, 4) # 判断是否存在欧拉回路 print(g.eulerian_path()) ``` 这段代码使用了邻接表来表示图的存储结构,并使用深度优先搜索算法来判断图是否连通。然后,根据图的度数来判断是否存在欧拉回路。最后,根据判断结果输出相应的信息。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI专题精讲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值