欧拉回路算法

1 基本概念

1.1 欧拉路径和欧拉回路

欧拉路径:欧拉路是指从图中任意一个点开始到图中任意一个点结束的路径,并且图中每条边通过的且只通过一次
欧拉回路:欧拉回路是指起点和终点相同的欧拉路。
注意:如果欧拉回路,那么一定存在欧拉路径

注意: 是每条边被访问一次节点可能会被访问两次。

充分必要条件:
对于无向图,所有边都是连通的

(1)存在欧拉路径的充分必要条件:

  • 度数为奇数的点只能是0个或者2个

(2)存在欧拉回路的充分必要条件:

  • 度数为奇数的只能是0个

对于有向图,所有边都是连通的

(1)存在欧拉路径的充分必要条件:

  • 要么所有点的出度均等于入度。
  • 要么除了两个点之外,其余所有点的出度等于入度,剩余的两个点:一个满足出度比入度多1(起点),另一个满足入度比出度多1(终点)。

(2)存在欧拉回路的充分必要条件:

  • 所有点的出度均等于入度

2 欧拉路径判定算法

2.1 Fleury(弗罗莱) 算法

Fleury算法用来判断图是否是欧拉路径或欧拉回路的算法。
使用如下的欧拉图,了解Fleury算法的主要步骤。
在这里插入图片描述

  • 选节点1为起点,并将该起点加入路径中。Fleury算法选择存储欧拉路径。
    在这里插入图片描述
  • 从起点开始,一路DFS试着走出一条通路。方法是找与此节点相邻的节点。
    如果只有一个节点,则将这个点直接加入路径中。
    如果有多个相邻节点,则选择其中一条边,把相邻节点加入路径后,且删除这一条边。
    如果没有邻接节点,则从路径中弹出
    节点5和节点2都与1相邻,可以选择向5方向,也可以选择2方向。这里选择2方向,把节点2放入路径,然后置1-2这条边为删除状态。如此这般,一路经过3、4、5节点后回到1号节点。下图中标记为红色的边表示已经访问或被删除。
    在这里插入图片描述
  • 重新回到节点1,此时不再存在与节点1邻接的节点,从路径中弹也,依次可弹出5、4、3。直到碰到2号节点。
    在这里插入图片描述
  • 因为存在与2号节点邻接的节点,再次以2号节点为始点,使用DFS开路。一路上遇到6、7,且再次回到2号节点。
    在这里插入图片描述
  • 2号节点不存在与之邻接的节点,出栈。同理,7、6依次出栈。
    在这里插入图片描述
    小结:
    当有与当前节点邻接的节点时,一路DFS,直到没有邻接的尽头。些时,一轮DFS算法结束,从路径中依次弹出没有邻接节点的节点,直到遇到还有邻接节点的节点,新一轮的DFS重新开始。直到所有节点邻接的边全部访问完毕。
    编码实现:
#include <iostream>
#include <math.h>
#include <algorithm>
#include <cstring>
#include <stack>
#define INF 100000
using namespace std;
int graph[100][100];
int n,m;
stack<int> sta;
void read() {
   
   
	for(int i = 0; i < m; i++) {
   
   
		int f,t;
		cin >> f >> t;
		graph[f][t] = 1;
		graph[t][f] = 1;
	}
}
void dfs(int u) {
   
   
	sta.push(u);
	for(int i = 1; i <= n; i++) {
   
   
		if(graph[i][u] > 0) {
   
   
			//标记为删除
			graph[u][i] = 0;
			graph[i][u] = 0;
			
### 关于欧拉路径和欧拉回路的概念 在图论中,欧拉路径是指在一个图中找到一条路径,该路径能够遍历所有的边恰好一次。如果这条路径的起点和终点相同,则称之为欧拉回路[^1]。 对于无向图而言,要判断是否存在欧拉回路,需满足两个条件:一是所有顶点度数均为偶数;二是除了孤立节点外,整个图为连通状态。而针对欧拉路径的存在性,只要求最多有两个奇度数的顶点即可[^2]。 当考虑有向图的情况时,对于欧拉回路来说,每个顶点入度等于出度,并且忽略方向后的图依然保持强联通性质。至于欧拉路径,则允许有一个顶点其入度比出度少一作为起始点,另一个顶点出度比入度多一作为结束点,其余各点仍需维持出入度相等情况。 ### 欧拉路径与欧拉回路的应用场景 这些概念广泛应用于多个领域: - **城市规划**:设计公交线路或垃圾收集路线等问题可以通过构建合适的网络模型来寻找最优解。 - **计算机科学中的编译器优化**:某些情况下,程序控制流图上的操作序列可以被看作是一系列指令之间的转移关系,在这种背景下探讨是否能一次性执行完全部语句而不重复访问某段代码就变得很有意义了。 - **电路板布线问题**:电子工程里也经常遇到类似的任务——即试图用最短距离连接各个组件的同时确保不会有任何两根导线交叉干扰彼此的工作效率。 ### 使用Python实现Hierholzer算法查找欧拉路径/回路 下面给出一段基于Hierholzer算法的简单Python代码示例,用于检测并打印给定图形中存在的任意一条符合条件的闭合环形轨迹(如果有): ```python from collections import defaultdict, deque def find_eulerian_tour(edges): graph = build_graph(edges) start_vertex = edges[0][0] stack = [start_vertex] path = [] while stack: current_node = stack[-1] if not graph[current_node]: path.append(stack.pop()) else: next_node = graph[current_node].pop() stack.append(next_node) return list(reversed(path)) def build_graph(edges): graph = defaultdict(list) for u, v in edges: graph[u].append(v) graph[v].append(u) return {k: deque(sorted(lst)) for k, lst in graph.items()} edges_example = [(1, 2), (2, 3), (3, 4), (4, 1)] print(find_eulerian_tour(edges_example)) ``` 此函数`find_eulerian_tour()`接收一组表示边界的元组列表作为输入参数,并返回代表所发现欧拉巡回的一串整数值。注意这里假设传入的数据已经过适当预处理以保证确实存在合法解答。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI专题精讲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值