NLP常见任务专题介绍(4)-ConditionalGeneration和CasualLM区别

transformers 库中,ConditionalGenerationCausalLM 是两种不同类型的语言模型,各自适用于不同的任务:

类别 Conditional Generation (条件生成) CausalLM (因果语言模型)
核心区别 依赖输入 条件 生成文本 只能 自回归 生成文本
训练方式 Encoder-Decoder(编码-解码) 结构 Decoder-only(仅解码) 结构
适用任务 翻译、摘要、文本填充 等任务 文本生成、对话、代码生成
代表模型 BARTForConditionalGeneration
T5ForC
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无声之钟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值