GraphGym 是一个用于设计和评估图神经网络(GNN)的平台,最初在论文 “Design Space for Graph Neural Networks” 中提出。我们现在正式将 GraphGym 作为 PyG 的一部分进行支持。
警告
GraphGym 的 API 可能会在未来发生变化,因为我们正在不断努力实现与 PyG 更好、更深度的集成。
1. 亮点
-
高度模块化的 GNN 流水线:
- 数据:数据加载和数据分割
- 模型:模块化的 GNN 实现
- 任务:节点级、边级和图级任务
- 评估:准确率、ROC AUC 等
-
可复现的实验配置:
- 每个实验都由一个配置文件完整描述
-
可扩展的实验管理:
- 轻松并行启动数千个 GNN 实验