VLLM专题(二十七)—使用 Kubernetes

在Kubernetes上部署vLLM是一种可扩展且高效的方式来服务机器学习模型。本指南将引导您使用原生Kubernetes部署vLLM。

此外,您还可以使用以下任意一种方式将vLLM部署到Kubernetes:

  • Helm
  • InftyAI/llmaz
  • KServe
  • kubernetes-sigs/lws
  • meta-llama/llama-stack
  • substratusai/kubeai
  • vllm-project/aibrix
  • vllm-project/production-stack

1. 前置条件

确保您已经拥有一个运行中的 Kubernetes 集群,并且集群中配置了 GPU。

2. 使用原生 Kubernetes 进行部署

  1. 为 vLLM 创建 PVC、Secret 和 Deployment
    PVC 用于存储模型缓存,这是可选的。您也可以使用 hostPath 或其他存储选项。
    以下是一个 Kubernetes PersistentVolumeClaim (PVC) 的配置示例,用于为 Mistral-7B 模型创建存储卷:
apiVersion<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无声之钟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值