表达式 | 证明 | 特点 | |
一般式 | A1x+B1y+C1z+D1=0 A2x+B2y+C2z+D2=0 | 两个平面相交的交线。 | 直线的方向是两个平面法向量的外积。 |
点向式(对称式) | (x-x0)/m=(y-y0)/n=(z-z0)/p | A(x0,y0,z0)是直线上的一点,向量s(m,n,p)为非零向量且与直线l平行,B(x,y,z)是直线上任意一点,向量AB与向量s平行,即向量的各个分量成比例,于是有(x-x0)/m=(y-y0)/n=(z-z0)/p | 1、方向向量是(m,n,p); 2、过点(x0,y0,z0)。 |
参数方程 | x=x0+mt y=y0+nt z=z0+pt | 有直线(x-x0)/m=(y-y0)/n=(z-z0)/p,令t=(x-x0)/m=(y-y0)/n=(z-z0)/p,则有: x=x0+mt y=y0+nt z=z0+pt | 1、方向向量是(m,n,p); 2、过点(x0,y0,z0)。 |
04-24
815


JS实现RSA加密
04-17
279


JS实现AES和DES
04-06
252

03-31
292

03-28
368


Python进程池知多少
03-02
766


Python线程池知多少
03-01
702


Python进程知多少
03-01
1076


Python闭包知多少
02-24
377


Python生成器知多少
02-24
1038


Python装饰器知多少
02-21
806


Python迭代器知多少
02-20
746

12-03
807
