数据仓库的概念最早是由美国著名的信息工程专家 William Inmon 博士在 1991 年提出,他的出现是因为数据量达到一定的程度,传统数据库的数据处理方案已无法支持方便地对海量数据直接做分析和处理。数据仓库对数据集合的定义是面向主题的、集成的、稳定的和随时间变化的,刚好弥补了数据库在 OLAP 方面的不足。值得说明的是,数据仓库是一个数据分析处理过程,或者说是一套数据处理的方法论,而不仅仅是一个数据存储软件或产品,大数据的工作很多都是基于数据仓库展开的,所以数据仓库方法论是除了大数据底层技术之外非常重要的一块面试内容。
本篇面试内容划重点:维度建模、分层思想。
数据建模
数据建模有什么意义(作用)?
数据模型就是数据组织和存储方法,它强调从业务、数据存取和使用角度合理存储数据。只有数据模型将数据有序的组织和存储起来之后,大数据才能得到高性能、低成本、高效率、高质量的使用。
- 性能:帮助我们快速查询所需要的数据,减少数据的 I/O 吞吐,提高使用数据的效率,如宽表。
- 成本:极大地减少不必要的数据冗余,也能实现计算结果复用,极大地降低存储和计算成本。
- 效率:在业务或系统发生变化时,可以保持稳定或很容易扩展,提高数据稳定性和连续性。
- 质量&