1.题目描述:
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
2.解题思路:
先只考虑典型的旋转数组,一个非减数组经过旋转之后,可以看成两个非减数组,如:[3,4,5,1,2]为[1,2,3,4,5]旋转之后的结果,可以看出,数组中的最小值位于两个非减数组的交界位置,我们可以采用二分法来找到该位置。使用二分法,当下标为mid位置处的值大于下标为right位置处的值时,可以说明此时mid位于左半边的数组,将mid的值赋予left,并根据mid = left + (right-left)/2更新mid值。当下标为mid位置处的值小于下标为left位置处的值时,说明此时mid位于右半边的数组,将mid的值赋予right,并根据mid = left + (right-left)/2更新mid值。这样保证left始终位置数组的左半边,right始终位置数组的右半边,直至right与left相邻时,取right的值最为数组的最小值。
在正常情况下,如果mid位置左半边的数组,则mid的范围为left≤mid>right,此时,mid是不可能等于right的,我们只要判断出mid<right就可以得出mid位于数组的左半边的结论。右半边同理可得left>mid<=right。存在一种特殊情况(如:[1,1,1,1,1,] [2,2,1,2,2,2])此时left=mid=right,这种情况无法做出判断,只能将从left到right的数组排序来求得最小值。
3.代码:
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
if(rotateArray.size() == 0)
return 0;
int size = rotateArray.size();
int left = 0;
int right = size - 1;
int mid = right/2;
while(1)
{
if(rotateArray[left]>rotateArray[mid])
{
right = mid;
mid = left + (right-left)/2;
}
if(rotateArray[right]<rotateArray[mid])
{
left = mid;
mid = left + (right-left)/2;
}
if(right - left == 1 && rotateArray[left] > rotateArray[right])
{
return rotateArray[right];
}
if(rotateArray[left] == rotateArray[mid] && rotateArray[left] == rotateArray[right])
{
return arraysort(rotateArray,left,right);
// return 0;
}
}
}
private:
int arraysort(vector<int> array, int left, int right)
{
int size = right - left;
int temp;
for(int i = left; i<=right; i++)
{
for(int j = left; j<=right-i; i++)
{
if(array[j] > array[j+1])
{
temp = array[j];
array[j] = array[j+1];
array[j+1] = temp;
}
}
}
return array[left];
}
};
4.编程遇到的问题:
冒泡排序不会写是真的菜!