【论文笔记】—低照度图像增强—Supervised—RetinexNet—2018-BMVC

本文提出了一个基于Retinex理论的深度学习框架Retinex-Net,用于低光照图像增强。通过构建LOL数据集,训练一个分解网络和一个增强网络,解决传统方法中反射和光照分解的局限性。分解网络学习低光/正常光图像对的共享反射率,而增强网络则进行光照调整和反射率去噪,实现了在增强图像的同时保持细节和结构。实验结果显示,Retinex-Net在增强和降噪方面表现出色,尤其在处理低光照图像的隐藏细节上优于其他方法。

【论文介绍】

本文提出用自己制作的弱光/正常光图像对的弱光数据集LOL数据集,利用Retinex理论中的不同光照下的图片反射率是相同的这一特点让其共享反射率,通过一个分解网络和一个增强网络对低照度图片进行处理得到最终增强的结果。 

【题目】:Deep retinex decomposition for low-light enhancement

【DOI】:10.48550/arXiv.1808.04560

【时间】:2018-08-14上传于arxiv
【会议】:2018 British Machine Vision Conference(BMVC)
【机构】:北京大学

【论文链接】:https://arxiv.org/abs/1808.04560
【代码链接】:https://github.com/weichen582/RetinexNet
【工程链接】:https://daooshee.github.io/BMVC2018website/

【提出问题】

以前的方法受到反射和光照分解模型容量的限制,很难设计出适用于各种场景的有效的图像分解约束条件。此外,照明图的操作也是手工制作的,这些方法的性能通常依赖于仔细的参数调整。 

【解决方案】

提出了一种数据驱动的Retinex分解方法。建立了一个融合图像分解和连续增强操作的深度网络。首先,利用子网络—解压网络将观测图像分割为不依赖光线的反射率和结构感知的平滑光照。解压网络是在两个约束条件下学习的。首先,低/正常光图像具有相同的反射率。其次,光照图要平滑,但保留主要结构,这是通过感知结构的总变化损失得到的。然后,另一个增强网络调整光照图以保持大区域的一致性,同时通过多尺度连接来裁剪局部分布。由于噪声在黑暗区域往往更大,甚至在增强过程中被放大,因此引入了反射率去噪。

【创新点】

  1. 用在真实场景中捕获的成对的低/正常光图像构建了一个大型数据集。LOL数据集:
  2. 构造了一种基于Retinex模型的深度学习图像分解算法。分解网络与连续的弱光增强网络进行端到端训练,因此该框架具有良好的光状态调节能力。
  3. 提出了一种结构感知的全变差约束用于深度图像分解。在梯度很强的地方,通过减轻总变化的影响,约束成功地平滑了照明图并保留了主要结构。

【网络结构】

Retinex-Net框架的增强过程分为分解、调整和重构三个步骤。

在分解步骤中,子网络DECO-NET将输入图像分解为反射率R和照度I。
首先使用3 × 3卷积层从输入图像中提取特征。然后,采用几个以直线矫正单元(ReLU)为激活函数的3×3卷积层,对RGB图像进行反射率和光照映射。一个3×3卷积层从特征空间投影R和I,用sigmoid函数约束R和I在[0,1]的范围内。
它在训练阶段采用低光/正常光图像对,而在测试阶段仅采用低光图像作为输入。在低光/正常光图像具有相同反射率和光照平滑度的约束下,Decom-Net学习以数据驱动的方式提取不同光照图像之间的一致性R。

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值